Solving decision problems with endogenous uncertainty and conditional information revelation using influence diagrams
Author
Abstract
Suggested Citation
DOI: 10.1007/s10287-025-00543-4
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Opher Baron & Oded Berman & Dmitry Krass, 2008. "Facility Location with Stochastic Demand and Constraints on Waiting Time," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 484-505, August.
- Ali Devran Kara & Serdar Yüksel, 2023. "Convergence of Finite Memory Q Learning for POMDPs and Near Optimality of Learned Policies Under Filter Stability," Mathematics of Operations Research, INFORMS, vol. 48(4), pages 2066-2093, November.
- Nicholas C. Petruzzi & Maqbool Dada, 1999. "Pricing and the Newsvendor Problem: A Review with Extensions," Operations Research, INFORMS, vol. 47(2), pages 183-194, April.
- Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
- Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
- Steffen L. Lauritzen & Dennis Nilsson, 2001. "Representing and Solving Decision Problems with Limited Information," Management Science, INFORMS, vol. 47(9), pages 1235-1251, September.
- Zhou, Rui & Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Sherwin, Michael D. & Yang, Dong, 2022. "A stochastic programming model with endogenous uncertainty for selecting supplier development programs to proactively mitigate supplier risk," Omega, Elsevier, vol. 107(C).
- R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
- Li, Xi & Liu, Qian, 2023. "Strategic ignorance: Managing endogenous demand in a supply chain," Omega, Elsevier, vol. 114(C).
- Mitra, G. & Lucas, C. & Moody, S. & Hadjiconstantinou, E., 1994. "Tools for reformulating logical forms into zero-one mixed integer programs," European Journal of Operational Research, Elsevier, vol. 72(2), pages 262-276, January.
- Apiruk Detwarasiti & Ross D. Shachter, 2005. "Influence Diagrams for Team Decision Analysis," Decision Analysis, INFORMS, vol. 2(4), pages 207-228, December.
- Colvin, Matthew & Maravelias, Christos T., 2010. "Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming," European Journal of Operational Research, Elsevier, vol. 203(1), pages 205-215, May.
- Tore Jonsbråten & Roger Wets & David Woodruff, 1998. "A class of stochastic programs withdecision dependent random elements," Annals of Operations Research, Springer, vol. 82(0), pages 83-106, August.
- Ross D. Shachter, 1986. "Evaluating Influence Diagrams," Operations Research, INFORMS, vol. 34(6), pages 871-882, December.
- Tommi Ekholm & Erin Baker, 2022. "Multiple Beliefs, Dominance and Dynamic Consistency," Management Science, INFORMS, vol. 68(1), pages 529-540, January.
- Ekholm, Tommi, 2018. "Climatic Cost-benefit Analysis Under Uncertainty and Learning on Climate Sensitivity and Damages," Ecological Economics, Elsevier, vol. 154(C), pages 99-106.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
- Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
- Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
- Barry R. Cobb, 2007. "Influence Diagrams with Continuous Decision Variables and Non-Gaussian Uncertainties," Decision Analysis, INFORMS, vol. 4(3), pages 136-155, September.
- Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2017. "Augmented nested sampling for stochastic programs with recourse and endogenous uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 613-627, December.
- Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
- Misuri, Alessio & Khakzad, Nima & Reniers, Genserik & Cozzani, Valerio, 2019. "A Bayesian network methodology for optimal security management of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Koller, Daphne & Milch, Brian, 2003. "Multi-agent influence diagrams for representing and solving games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 181-221, October.
- Erik Jørgensen & Anders Kristensen & Dennis Nilsson, 2014. "Markov Limid processes for representing and solving renewal problems," Annals of Operations Research, Springer, vol. 219(1), pages 63-84, August.
- Francisco Javier Díez & Manuel Arias & Jorge Pérez-Martín & Manuel Luque, 2022. "Teaching Probabilistic Graphical Models with OpenMarkov," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
- Barry R. Cobb, 2021. "Statistical Process Control for the Number of Defectives with Limited Memory," Decision Analysis, INFORMS, vol. 18(3), pages 203-217, September.
- Finn Jensen & Thomas Nielsen, 2013. "Probabilistic decision graphs for optimization under uncertainty," Annals of Operations Research, Springer, vol. 204(1), pages 223-248, April.
- Lars Hellemo & Paul I. Barton & Asgeir Tomasgard, 2018. "Decision-dependent probabilities in stochastic programs with recourse," Computational Management Science, Springer, vol. 15(3), pages 369-395, October.
- Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
- Zhao, Liang & Rong, Jiyun & Ma, Guofu & Liang, Chen & Long, Jian, 2025. "Multi-stage stochastic programming for integrated optimization of ethylene production processes and utility systems under uncertainty," Energy, Elsevier, vol. 320(C).
- Giovanni Pantuso, 2021. "A node formulation for multistage stochastic programs with endogenous uncertainty," Computational Management Science, Springer, vol. 18(3), pages 325-354, July.
- Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
- Suhan Wu & Min Luo & Jingxia Zhang & Daoheng Zhang & Lianmin Zhang, 2022. "Pharmaceutical Supply Chain in China: Pricing and Production Decisions with Price-Sensitive and Uncertain Demand," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
- Peter Buchholz & Dimitri Scheftelowitsch, 2019. "Computation of weighted sums of rewards for concurrent MDPs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 1-42, February.
- Cobb, Barry R. & Shenoy, Prakash P., 2008. "Decision making with hybrid influence diagrams using mixtures of truncated exponentials," European Journal of Operational Research, Elsevier, vol. 186(1), pages 261-275, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:22:y:2025:i:2:d:10.1007_s10287-025-00543-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/comgts/v22y2025i2d10.1007_s10287-025-00543-4.html