Author
Listed:
- Yitao Duan
(University of California at Berkeley)
- Jingtao Wang
(University of California at Berkeley)
- Matthew Kam
(University of California at Berkeley)
- John Canny
(University of California at Berkeley)
Abstract
Link analysis algorithms have been used successfully on hyperlinked data to identify authoritative documents and retrieve other information. They also showed great potential in many new areas such as counterterrorism and surveillance. Emergence of new applications and changes in existing ones created new opportunities, as well as difficulties, for them: (1) In many situations where link analysis is applicable, there may not be an explicit hyperlinked structure. (2) The system can be highly dynamic, resulting in constant update to the graph. It is often too expensive to rerun the algorithm for each update. (3) The application often relies heavily on client-side logging and the information encoded in the graph can be very personal and sensitive. In this case privacy becomes a major concern. Existing link analysis algorithms, and their traditional implementations, are not adequate in face of these new challenges. In this paper we propose the use of a weighted graph to define and/or augment a link structure. We present a generalized HITS algorithm that is suitable for running in a dynamic environment. The algorithm uses the idea of “lazy update” to amortize cost across multiple updates while still providing accurate ranking to users in the mean time. We prove the convergence of the new algorithm and evaluate its benefit using the Enron email dataset. Finally we devise a distributed implementation of the algorithm that preserves user privacy thus making it socially acceptable in real-world applications.
Suggested Citation
Yitao Duan & Jingtao Wang & Matthew Kam & John Canny, 2005.
"Privacy Preserving Link Analysis on Dynamic Weighted Graph,"
Computational and Mathematical Organization Theory, Springer, vol. 11(2), pages 141-159, July.
Handle:
RePEc:spr:comaot:v:11:y:2005:i:2:d:10.1007_s10588-005-3941-2
DOI: 10.1007/s10588-005-3941-2
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:11:y:2005:i:2:d:10.1007_s10588-005-3941-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.