IDEAS home Printed from
   My bibliography  Save this article

Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008


  • Ruibo Lei


  • Matti Leppäranta


  • Bin Cheng


  • Petra Heil


  • Zhijun Li



The long-term ice record (from 1964 to 2008) of an Arctic lake in northern Europe (Lake Kilpisjärvi) reveals the response of lake ice to climate change at local and regional scales. Average freeze-up and ice breakup occurred on 9 November and 19 June, respectively. The freeze-up has been significantly delayed at a rate of 2.3 d per decade from 1964 onward (P > 0.05). No significant change has taken place in ice breakup. Annual average ice thickness has become smaller since the mid-1980s (P > 0.05). Air temperature during the early ice season significantly affected the ice thickness. The freeze-up date exhibits the highest correlation with the 2-month average daily minimum air temperature centered at the end of October, while the ice breakup date exhibits the highest correlation with the 2-month average daily maximal air temperature centered in mid May. A 1°C increase in the surface air temperature corresponds to a freeze-up later by 3.4 days and an ice breakup earlier by 3.6 days. Snow cover is a critical factor in lake-ice climatology. For cumulative November to March precipitation of less than 0.13 m, the insulating effect of the snow dominated, while higher rates of precipitation favored thicker ice due to the formation of snow ice. Variations in ice records of Lake Kilpisjärvi can serve as an indicator of climate variations across the northern Europe. The North Atlantic Oscillation (NAO) does not significantly affect the ice season there, although both the local air temperatures and winter precipitation contain a strong NAO signal. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ruibo Lei & Matti Leppäranta & Bin Cheng & Petra Heil & Zhijun Li, 2012. "Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008," Climatic Change, Springer, vol. 115(3), pages 725-739, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:725-739
    DOI: 10.1007/s10584-012-0489-2

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:725-739. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.