IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v23y2015i4p913-924.html
   My bibliography  Save this article

The practical behavior of the homogeneous self-dual formulations in interior point methods

Author

Listed:
  • Csaba Meszaros

    ()

Abstract

Interior point methods proved to be efficient and robust tools for solving large-scale optimization problems. The standard infeasible-start implementations scope very well with wide variety of problem classes, their only serious drawback is that they detect primal or dual infeasibility by divergence and not by convergence. As an alternative, approaches based on skew-symmetric and self-dual reformulations were proposed. In our computational study we overview the implementation of interior point methods on the homogeneous self-dual formulation of optimization problems and investigate the effect of the increased dimension from numerical and computational aspects. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Csaba Meszaros, 2015. "The practical behavior of the homogeneous self-dual formulations in interior point methods," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 913-924, December.
  • Handle: RePEc:spr:cejnor:v:23:y:2015:i:4:p:913-924
    DOI: 10.1007/s10100-013-0336-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-013-0336-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:23:y:2015:i:4:p:913-924. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.