IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i5d10.1007_s40745-024-00575-8.html
   My bibliography  Save this article

Comparative Analysis of Machine Learning Techniques for Imbalanced Genetic Data

Author

Listed:
  • Arshmeet Kaur

    (Evergreen Valley College)

  • Morteza Sarmadi

    (Gilead Sciences)

Abstract

Advancements in genome sequencing technologies have significantly increased the availability of genomic data. The use of machine learning models to predict the pathogenicity or clinical significance of genetic mutations is crucial. However, genetic datasets often feature imbalanced target variables and high-cardinality, skewed predictor variables. These attributes complicate machine learning modeling processes. This study addresses these challenges in both regression and classification tasks. In this study, we systematically explored the impact of various data preprocessing techniques, feature selection methods, and model choices on the performance of machine learning models trained on imbalanced genetic data. We evaluated the performance metrics using fivefold cross-validation. Our key findings demonstrate that the regression models are robust to outliers and skew in predictor and target variables. Similarly, in classification tasks, class-imbalanced target variables and skewed predictors minimally impact model performance. Among the models tested, random forest was the most effective model for both imbalanced regression and classification tasks. Our key contributions are as follows: we address a significant research gap by focusing on imbalanced regression, a problem that is sparsely explored compared to class-imbalanced classification. We identify the techniques that improve prediction performance and provide practical insights into handling genetic data. Additionally, we provide a foundation for future research to further optimize machine learning approaches in genomics. This study uses a genetic dataset as a case, but our findings are applicable to imbalanced data in other fields.

Suggested Citation

  • Arshmeet Kaur & Morteza Sarmadi, 2025. "Comparative Analysis of Machine Learning Techniques for Imbalanced Genetic Data," Annals of Data Science, Springer, vol. 12(5), pages 1553-1575, October.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:5:d:10.1007_s40745-024-00575-8
    DOI: 10.1007/s40745-024-00575-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00575-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00575-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:5:d:10.1007_s40745-024-00575-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.