Author
Abstract
Nature-inspired algorithms (NIA) are proven to be the potential tool for solving intricate optimization problems and aid in the development of better computational techniques. In recent years, these algorithms have raised considerable interest to optimize feature selection problems. In literature, NIA is found to select relevant features among available features in the diagnosis of many chronic diseases. In this paper, a comprehensive review of existing nature-inspired feature selection techniques is presented. Along with this, the fundamental definitions of feature selection and the usage of NIA to optimize feature selection are shown. We have given a review showcasing the NIA application for selecting feature subsets from the available features in the domain of medical applications. The paper reviews and analyzes numerous relevant papers from 2008 to 2022 on feature selection through NIA on biomedical applications. Moreover, to find the best optimization algorithm for feature selection, we have conducted experiments among four well-known nature-inspired algorithms on ten benchmark datasets of the biomedical domain for classification. We have reported results on various state-of-the-art evaluation measures and presented the convergence graphs for analysis. Based on the average rank of fitness values, Particle Swarm Optimization is found to be better than Harris Hawk Optimization, Grey Wolf Optimization, and Whale Optimization. In this paper, we have also presented some open challenges of this research area to guide researchers as well as experts of computational intelligence for future work. The paper will help future researchers understand the use and implementation of nature-inspired algorithms for feature selection in the medical domain.
Suggested Citation
Varun Arora & Parul Agarwal, 2025.
"An Empirical Study of Nature-Inspired Algorithms for Feature Selection in Medical Applications,"
Annals of Data Science, Springer, vol. 12(5), pages 1479-1524, October.
Handle:
RePEc:spr:aodasc:v:12:y:2025:i:5:d:10.1007_s40745-024-00571-y
DOI: 10.1007/s40745-024-00571-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:5:d:10.1007_s40745-024-00571-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.