IDEAS home Printed from
   My bibliography  Save this article

The propagation of uncertainty through travel demand models: An exploratory analysis


  • Yong Zhao

    () (The University of Texas at Austin, 6.9 E. Cockrell Jr. Hall, Austin, TX 78712-1076, USA)

  • Kara Maria Kockelman

    () (The University of Texas at Austin, 6.9 E. Cockrell Jr. Hall, Austin, TX 78712-1076, USA)


The future operations of transportation systems involve a lot of uncertainty - in both inputs and model parameters. This work investigates the stability of contemporary transport demand model outputs by quantifying the variability in model inputs, such as zonal socioeconomic data and trip generation rates, and simulating the propagation of their variation through a series of common demand models over a 25-zone network. The results suggest that uncertainty is likely to compound itself - rather than attenuate - over a series of models. Mispredictions at early stages (e.g., trip generation) in multi-stage models appear to amplify across later stages. While this effect may be counteracted by equilibrium assignment of traffic flows across a network, predicted traffic flows are highly and positively correlated.

Suggested Citation

  • Yong Zhao & Kara Maria Kockelman, 2002. "The propagation of uncertainty through travel demand models: An exploratory analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(1), pages 145-163.
  • Handle: RePEc:spr:anresc:v:36:y:2002:i:1:p:145-163
    Note: Received: March 2001/Accepted: August 2001

    Download full text from publisher

    File URL:
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Parthasarathi, Pavithra & Levinson, David, 2010. "Post-construction evaluation of traffic forecast accuracy," Transport Policy, Elsevier, vol. 17(6), pages 428-443, November.
    2. Nobuhiro Sanko, 2017. "Temporal transferability: trade-off between data newness and the number of observations for forecasting travel demand," Transportation, Springer, vol. 44(6), pages 1403-1420, November.
    3. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    4. Maria Börjesson & Jonas Eliasson & Mattias Lundberg, 2014. "Is CBA Ranking of Transport Investments Robust?," Journal of Transport Economics and Policy, University of Bath, vol. 48(2), pages 189-204, May.
    5. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    6. Westin, Jonas & de Jong, Gerard & Vierth, Inge & Krüger, Niclas & Karlsson, Rune & Johansson, Magnus, 2015. "Baserunning - analyzing the sensitivity and economies of scale of the Swedish national freight model system using stochastic production-consumption-matrices," Working papers in Transport Economics 2015:10, CTS - Centre for Transport Studies Stockholm (KTH and VTI), revised 15 Sep 2016.
    7. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
    8. Sanko, Nobuhiro & Morikawa, Takayuki & Nagamatsu, Yoshitaka, 2013. "Post-project evaluation of travel demand forecasts: Implications from the case of a Japanese railway," Transport Policy, Elsevier, vol. 27(C), pages 209-218.
    9. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    10. Yin, Yafeng & Madanat, Samer M. & Lu, Xiao-Yun, 2009. "Robust improvement schemes for road networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 198(2), pages 470-479, October.
    11. Anatoliy KULIK & Kostiantyn DERGACHOV & Oleksandr RADOMSKYI, 2015. "Binocular technical vision for wheeled robot controlling," Transport Problems, Silesian University of Technology, vol. 10(1), pages 55-62, March.
    12. Hironori Kato & Yuichiro Kaneko & Masashi Inoue, 2010. "Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area," Transportation, Springer, vol. 37(5), pages 775-799, September.
    13. Merlin, Louis A. & Levine, Jonathan & Grengs, Joe, 2018. "Accessibility analysis for transportation projects and plans," Transport Policy, Elsevier, vol. 69(C), pages 35-48.
    14. Börjesson, Maria & Jonsson, R. Daniel & Berglund, Svante & Almström, Peter, 2014. "Land-use impacts in transport appraisal," Research in Transportation Economics, Elsevier, vol. 47(C), pages 82-91.
    15. Sumalee, Agachai & Xu, Wei, 2011. "First-best marginal cost toll for a traffic network with stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 41-59, January.
    16. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    17. Gerard Jong & Andrew Daly & Marits Pieters & Stephen Miller & Ronald Plasmeijer & Frank Hofman, 2007. "Uncertainty in traffic forecasts: literature review and new results for The Netherlands," Transportation, Springer, vol. 34(4), pages 375-395, July.
    18. Shuhong Ma & Yan Zhang & Chaoxu Sun, 2019. "Optimization and Application of Integrated Land Use and Transportation Model in Small- and Medium-Sized Cities in China," Sustainability, MDPI, Open Access Journal, vol. 11(9), pages 1-14, May.
    19. Chow, Joseph Y.J. & Regan, Amelia C., 2011. "Network-based real option models," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 682-695, May.
    20. Xu, Xiangdong & Chen, Anthony & Wong, S.C. & Cheng, Lin, 2015. "Selection bias in build-operate-transfer transportation project appraisals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 245-251.
    21. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.
    22. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    23. Manzo, Stefano & Nielsen, Otto Anker & Prato, Carlo Giacomo, 2015. "How uncertainty in input and parameters influences transport model :output A four-stage model case-study," Transport Policy, Elsevier, vol. 38(C), pages 64-72.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:anresc:v:36:y:2002:i:1:p:145-163. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.