IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v353y2025i2d10.1007_s10479-024-06440-4.html
   My bibliography  Save this article

Fast and reliable uncertainty quantification with neural network ensembles for industrial image classification

Author

Listed:
  • Arthur Thuy

    (Ghent University
    corelab CVAMO)

  • Dries F. Benoit

    (Ghent University
    corelab CVAMO)

Abstract

Image classification with neural networks (NNs) is widely used in industrial processes, situations where the model likely encounters unknown objects during deployment, i.e., out-of-distribution (OOD) data. Worryingly, NNs tend to make confident yet incorrect predictions when confronted with OOD data. To increase the models’ reliability, they should quantify the uncertainty in their own predictions, communicating when the output should (not) be trusted. Deep ensembles, composed of multiple independent NNs, have been shown to perform strongly but are computationally expensive. Recent research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study investigates the predictive and uncertainty performance of efficient NN ensembles in the context of image classification for industrial processes. It is the first to provide a comprehensive comparison and it proposes a novel Diversity Quality metric to quantify the ensembles’ performance on the in-distribution and OOD sets in one single metric. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It matches the deep ensemble in both uncertainty and accuracy while exhibiting considerable savings in training time, test time, and memory storage.

Suggested Citation

  • Arthur Thuy & Dries F. Benoit, 2025. "Fast and reliable uncertainty quantification with neural network ensembles for industrial image classification," Annals of Operations Research, Springer, vol. 353(2), pages 517-543, October.
  • Handle: RePEc:spr:annopr:v:353:y:2025:i:2:d:10.1007_s10479-024-06440-4
    DOI: 10.1007/s10479-024-06440-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06440-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06440-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:353:y:2025:i:2:d:10.1007_s10479-024-06440-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.