IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v352y2025i3d10.1007_s10479-023-05528-7.html
   My bibliography  Save this article

Noise traders in an agent-based artificial stock market

Author

Listed:
  • Xiaoting Dai

    (Jiangnan University)

  • Jie Zhang

    (Xi’an Jiaotong Liverpool University)

  • Victor Chang

    (Aston University)

Abstract

This paper investigates whether noise traders can survive in the long run and how they influence financial markets by proposing an agent-based artificial stock market, as one simulation model of computational economics. This market contains noise traders, informed and uninformed traders. Informed and uninformed traders can learn from information by using Genetic Programming, while noise traders cannot. The system is first calibrated to real financial markets by replicating several stylized facts. We find that noise traders cannot survive or they just transform to other kind of traders in the long run, and they increase market volatility, price distortion, noise trader risk, and trading volume in the market. However, regulation intervention, e.g., price limits, transaction tax and longer settlement cycle, can affect noise trader’s surviving period and their influence on markets.

Suggested Citation

  • Xiaoting Dai & Jie Zhang & Victor Chang, 2025. "Noise traders in an agent-based artificial stock market," Annals of Operations Research, Springer, vol. 352(3), pages 715-744, September.
  • Handle: RePEc:spr:annopr:v:352:y:2025:i:3:d:10.1007_s10479-023-05528-7
    DOI: 10.1007/s10479-023-05528-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05528-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05528-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:352:y:2025:i:3:d:10.1007_s10479-023-05528-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.