Author
Listed:
- Rie B. Larsen
(Delft University of Technology)
- Rudy R. Negenborn
(Delft University of Technology)
- Bilge Atasoy
(Delft University of Technology)
Abstract
Cooperation between container transport service providers can increase efficiency in the logistics sector significantly. However, cooperation between competitors requires co-planning methods that not only give the cooperating partners an advantage towards external competition but also protect the partners from losing information, clients and autonomy to one another. Furthermore, modern freight transport requires real-time methods that react to new information and situations. We propose a real-time, co-planning method called departure learning based on model predictive control where a barge operator considers the joint cost of themselves and a truck operator when deciding barge departures. At regular time-intervals, the barge operator uses previous information to propose a number of departure schedules for which the truck operator discloses their corresponding expected operational costs. Co-planning thus only requires limited exchange of aggregate data. The impact of using departure learning on the transport system’s performance and the method’s learning quality are thoroughly investigated numerically on an illustrative, simulated, realistic hinterland network. With as little as six schedules being exchanged per timestep, departure learning outperforms decentralized benchmark methods significantly in terms of operational costs. It is found that using knowledge about the performance of related schedules is important for the exploration of opportunities, but if this is relied upon too much, the realized solution becomes more costly. It is also found that departure learning is a reliable and realistic co-planning method that especially performs well when peaks in the demand make departure times highly correlated to the cost of operating the transport system, such as in hinterland areas of ports which receive large container ships.
Suggested Citation
Rie B. Larsen & Rudy R. Negenborn & Bilge Atasoy, 2025.
"A learning-based co-planning method with truck and container routing for improved barge departure times,"
Annals of Operations Research, Springer, vol. 350(1), pages 169-199, July.
Handle:
RePEc:spr:annopr:v:350:y:2025:i:1:d:10.1007_s10479-023-05706-7
DOI: 10.1007/s10479-023-05706-7
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:1:d:10.1007_s10479-023-05706-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.