IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v350y2025i1d10.1007_s10479-022-04560-3.html
   My bibliography  Save this article

Adaptive forecast-driven repositioning for dynamic ride-sharing

Author

Listed:
  • Martin Pouls

    (FZI Research Center for Information Technology)

  • Nitin Ahuja

    (PTV Group)

  • Katharina Glock

    (FZI Research Center for Information Technology)

  • Anne Meyer

    (TU Dortmund University)

Abstract

In dynamic ride-sharing systems, intelligent repositioning of idle vehicles often improves the overall performance with respect to vehicle utilization, request rejection rates, and customer waiting times. In this work, we present a forecast-driven idle vehicle repositioning algorithm. Our approach takes a demand forecast as well as the current vehicle fleet configuration as inputs and determines suitable repositioning assignments for idle vehicles. The core part of our approach is a mixed-integer programming model that aims to maximize the acceptance rate of anticipated future trip requests while minimizing vehicle travel times for repositioning movements. To account for changes in current trip demand and vehicle supply, our algorithm adapts relevant parameters over time. We embed the repositioning algorithm into a planning service for vehicle dispatching. We evaluate our forecast-driven repositioning approach through extensive simulation studies on real-world datasets from Hamburg, New York City, Manhattan, and Chengdu. The algorithm is tested assuming a perfect demand forecast and applying a naïve forecasting model. These serve as an upper and lower bound on state-of-the-art forecasting methods. As a benchmark algorithm, we utilize a reactive repositioning scheme. Compared to this, our forecast-driven approach reduces trip request rejection rates by an average of 3.5 percentage points and improves customer waiting and ride times.

Suggested Citation

  • Martin Pouls & Nitin Ahuja & Katharina Glock & Anne Meyer, 2025. "Adaptive forecast-driven repositioning for dynamic ride-sharing," Annals of Operations Research, Springer, vol. 350(1), pages 235-268, July.
  • Handle: RePEc:spr:annopr:v:350:y:2025:i:1:d:10.1007_s10479-022-04560-3
    DOI: 10.1007/s10479-022-04560-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04560-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04560-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    2. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    3. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "A survey on dynamic and stochastic vehicle routing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 215-231, January.
    4. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    5. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    6. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    7. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    8. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    9. Ulmer, Marlin W. & Soeffker, Ninja & Mattfeld, Dirk C., 2018. "Value function approximation for dynamic multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 883-899.
    10. Gambella, Claudio & Malaguti, Enrico & Masini, Filippo & Vigo, Daniele, 2018. "Optimizing relocation operations in electric car-sharing," Omega, Elsevier, vol. 81(C), pages 234-245.
    11. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    12. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    13. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    14. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    15. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    16. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    3. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    4. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    5. Ninja Soeffker & Marlin W. Ulmer & Dirk C. Mattfeld, 2024. "Balancing resources for dynamic vehicle routing with stochastic customer requests," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(2), pages 331-373, June.
    6. Yu Wu & Bo Zeng & Ming Jian, 2025. "ADP- and rollout-based dynamic vehicle routing for pick-up service via budgeting capacity," Flexible Services and Manufacturing Journal, Springer, vol. 37(2), pages 513-557, June.
    7. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
    8. Gregorio Tirado & Lars Magnus Hvattum, 2017. "Determining departure times in dynamic and stochastic maritime routing and scheduling problems," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 553-571, December.
    9. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    10. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    11. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    12. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    13. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
    14. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Wei, Xiaoyang & Jia, Shuai & Meng, Qiang & Koh, Jimmy, 2024. "Dynamic tugboat deployment and scheduling with stochastic and time-varying service demands," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    17. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
    18. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    19. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    20. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:1:d:10.1007_s10479-022-04560-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.