IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v350y2025i1d10.1007_s10479-021-04489-z.html
   My bibliography  Save this article

Global synchromodal shipment matching problem with dynamic and stochastic travel times: a reinforcement learning approach

Author

Listed:
  • W. Guo

    (University of Quebec at Montreal)

  • B. Atasoy

    (Delft University of Technology)

  • R. R. Negenborn

    (Delft University of Technology)

Abstract

Global synchromodal transportation involves the movement of container shipments between inland terminals located in different continents using ships, barges, trains, trucks, or any combination among them through integrated planning at a network level. One of the challenges faced by global operators is the matching of accepted shipments with services in an integrated global synchromodal transport network with dynamic and stochastic travel times. The travel times of services are unknown and revealed dynamically during the execution of transport plans, but the stochastic information of travel times are assumed available. Matching decisions can be updated before shipments arrive at their destination terminals. The objective of the problem is to maximize the total profits that are expressed in terms of a combination of revenues, travel costs, transfer costs, storage costs, delay costs, and carbon tax over a given planning horizon. We propose a sequential decision process model to describe the problem. In order to address the curse of dimensionality, we develop a reinforcement learning approach to learn the value of matching a shipment with a service through simulations. Specifically, we adopt the Q-learning algorithm to update value function estimations and use the $$\epsilon $$ ϵ -greedy strategy to balance exploitation and exploration. Online decisions are created based on the estimated value functions. The performance of the reinforcement learning approach is evaluated in comparison to a myopic approach that does not consider uncertainties and a stochastic approach that sets chance constraints on feasible transshipment under a rolling horizon framework.

Suggested Citation

  • W. Guo & B. Atasoy & R. R. Negenborn, 2025. "Global synchromodal shipment matching problem with dynamic and stochastic travel times: a reinforcement learning approach," Annals of Operations Research, Springer, vol. 350(1), pages 63-94, July.
  • Handle: RePEc:spr:annopr:v:350:y:2025:i:1:d:10.1007_s10479-021-04489-z
    DOI: 10.1007/s10479-021-04489-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04489-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04489-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ehmke, Jan Fabian & Campbell, Ann Melissa & Urban, Timothy L., 2015. "Ensuring service levels in routing problems with time windows and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 240(2), pages 539-550.
    2. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    3. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    5. Rodrigues, Filipe & Agra, Agostinho & Christiansen, Marielle & Hvattum, Lars Magnus & Requejo, Cristina, 2019. "Comparing techniques for modelling uncertainty in a maritime inventory routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 831-845.
    6. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    7. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    8. Michel Gendreau & Ola Jabali & Walter Rei, 2016. "50th Anniversary Invited Article—Future Research Directions in Stochastic Vehicle Routing," Transportation Science, INFORMS, vol. 50(4), pages 1163-1173, November.
    9. Demir, Emrah & Burgholzer, Wolfgang & Hrušovský, Martin & Arıkan, Emel & Jammernegg, Werner & Woensel, Tom Van, 2016. "A green intermodal service network design problem with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 789-807.
    10. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Wenjing & Atasoy, Bilge & van Blokland, Wouter Beelaerts & Negenborn, Rudy R., 2021. "Global synchromodal transport with dynamic and stochastic shipment matching," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Guo, Wenjing & Zhang, Yimeng & Li, Wenfeng & Negenborn, Rudy R. & Atasoy, Bilge, 2024. "Augmented Lagrangian relaxation-based coordinated approach for global synchromodal transport planning with multiple operators," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Zhang, Yimeng & Tan, Xiangrong & Gan, Mi & Liu, Xiaobo & Atasoy, Bilge, 2025. "Operational synchromodal transport planning methodologies: Review and roadmap," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    4. Alexandre M. Florio & Richard F. Hartl & Stefan Minner & Juan-José Salazar-González, 2021. "A Branch-and-Price Algorithm for the Vehicle Routing Problem with Stochastic Demands and Probabilistic Duration Constraints," Transportation Science, INFORMS, vol. 55(1), pages 122-138, 1-2.
    5. Filom, Siyavash & Razavi, Saiedeh, 2025. "A learning-based robust optimization framework for synchromodal freight transportation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    6. Mojtaba Rajabi-Bahaabadi & Afshin Shariat-Mohaymany & Mohsen Babaei & Daniele Vigo, 2021. "Reliable vehicle routing problem in stochastic networks with correlated travel times," Operational Research, Springer, vol. 21(1), pages 299-330, March.
    7. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    8. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    9. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    10. Chen, Jingxu & Jia, Shuai & Wang, Shuaian & Liu, Zhiyuan, 2018. "Subloop-based reversal of port rotation directions for container liner shipping network alteration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 336-361.
    11. Wenjing Guo & Bilge Atasoy & Wouter Beelaerts Blokland & Rudy R. Negenborn, 2022. "Anticipatory approach for dynamic and stochastic shipment matching in hinterland synchromodal transportation," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 483-517, June.
    12. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    13. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    14. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
    16. Bernard G. Zweers & Sandjai Bhulai & Rob D. Mei, 2021. "Planning hinterland container transportation in congested deep-sea terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 583-622, September.
    17. Federica Bomboi & Christoph Buchheim & Jonas Pruente, 2022. "On the stochastic vehicle routing problem with time windows, correlated travel times, and time dependency," 4OR, Springer, vol. 20(2), pages 217-239, June.
    18. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    19. Bart Van Riessen & Judith Mulder & Rudy R. Negenborn & Rommert Dekker, 2021. "Revenue management with two fare classes in synchromodal container transportation," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 623-662, September.
    20. Maaike Hoogeboom & Yossiri Adulyasak & Wout Dullaert & Patrick Jaillet, 2021. "The Robust Vehicle Routing Problem with Time Window Assignments," Transportation Science, INFORMS, vol. 55(2), pages 395-413, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:1:d:10.1007_s10479-021-04489-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.