IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v349y2025i2d10.1007_s10479-019-03183-5.html
   My bibliography  Save this article

A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping

Author

Listed:
  • Liqian Yang

    (Harbin Engineering University
    Aalborg University)

  • Gang Chen

    (Aalborg University)

  • Niels Gorm Malý Rytter

    (Aalborg University)

  • Jinlou Zhao

    (Harbin Engineering University)

  • Dong Yang

    (The Hong Kong Polytechnic University)

Abstract

In order to enhance sustainability in maritime shipping, shipping companies spend good efforts in improving the operational energy efficiency of existing ships. Accurate fuel consumption prediction model is a prerequisite of such operational improvements. Existing grey-box models (GBMs) are found with significant performance potential for ship fuel consumption prediction, although having a limitation of separating weather directions. Aiming to overcome this limitation, we propose a novel genetic algorithm-based GBM (GA-based GBM), where ship fuel consumption is modelled in a procedure based on basic principles of ship propulsion and the unknown parameters in this model are estimated with a GA-based procedure. Real ship operation data from a crude oil tanker over a 7-year sailing period are used to demonstrate the accuracy and reliability of the proposed model. To highlight the contribution of this work, we compare the proposed model against the latest GBM. The results show that the fitting performance of the proposed model is remarkably better, especially for oblique weather directions. The proposed model can be employed as a basis of ship energy efficiency management programs to reduce fuel consumption and greenhouse gas (GHG) emissions of a ship. This is beneficial to achieve the goal of sustainable shipping.

Suggested Citation

  • Liqian Yang & Gang Chen & Niels Gorm Malý Rytter & Jinlou Zhao & Dong Yang, 2025. "A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping," Annals of Operations Research, Springer, vol. 349(2), pages 525-551, June.
  • Handle: RePEc:spr:annopr:v:349:y:2025:i:2:d:10.1007_s10479-019-03183-5
    DOI: 10.1007/s10479-019-03183-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03183-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03183-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gang Chen & Liping Jiang, 2016. "Managing customer arrivals with time windows: a case of truck arrivals at a congested container terminal," Annals of Operations Research, Springer, vol. 244(2), pages 349-365, September.
    2. Xuan Qiu & Eugene Y.C. Wong & Jasmine Siu Lee Lam, 2018. "Evaluating economic and environmental value of liner vessel sharing along the maritime silk road," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(3), pages 336-350, April.
    3. Rezaei Somarin, Aghil & Chen, Songlin & Asian, Sobhan & Wang, David Z.W., 2017. "A heuristic stock allocation rule for repairable service parts," International Journal of Production Economics, Elsevier, vol. 184(C), pages 131-140.
    4. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    5. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    6. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    7. HaiYan Wang & Son Nguyen, 2017. "Prioritizing mechanism of low carbon shipping measures using a combination of FQFD and FTOPSIS," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(2), pages 187-207, February.
    8. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    9. Zoi Nikopoulou, 2017. "Incremental costs for reduction of air pollution from ships: a case study on North European emission control area," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(8), pages 1056-1077, November.
    10. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    11. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    12. Guan, Cong & Theotokatos, Gerasimos & Zhou, Peilin & Chen, Hui, 2014. "Computational investigation of a large containership propulsion engine operation at slow steaming conditions," Applied Energy, Elsevier, vol. 130(C), pages 370-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    2. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    3. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    4. Chen Li & Xiangtong Qi & Chung-Yee Lee, 2015. "Disruption Recovery for a Vessel in Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 900-921, November.
    5. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    6. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    7. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    8. Beullens, Patrick & Ge, Fangsheng & Hudson, Dominic, 2023. "The economic ship speed under time charter contract—A cash flow approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    9. Mansouri, S. Afshin & Lee, Habin & Aluko, Oluwakayode, 2015. "Multi-objective decision support to enhance environmental sustainability in maritime shipping: A review and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 3-18.
    10. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    11. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    12. Ge, Fangsheng & Beullens, Patrick & Hudson, Dominic, 2021. "Optimal economic ship speeds, the chain effect, and future profit potential," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 168-196.
    13. Hamdan, Sadeque & Feillet, Dominique & Cheaitou, Ali & Cariou, Pierre & Brahimi, Nadjib, 2025. "Optimizing Asia–Europe container network: The Suez Canal and Cape of Good Hope routes in a changing world," European Journal of Operational Research, Elsevier, vol. 325(1), pages 167-188.
    14. Reinhardt, Line Blander & Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M. & Vial, Guillaume T.P., 2016. "The liner shipping berth scheduling problem with transit times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 116-128.
    15. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    16. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    17. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    18. Tran, Nguyen Khoi & Haasis, Hans-Dietrich, 2015. "An empirical study of fleet expansion and growth of ship size in container liner shipping," International Journal of Production Economics, Elsevier, vol. 159(C), pages 241-253.
    19. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    20. Agra, Agostinho & Christiansen, Marielle & Delgado, Alexandrino & Simonetti, Luidi, 2014. "Hybrid heuristics for a short sea inventory routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 924-935.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:349:y:2025:i:2:d:10.1007_s10479-019-03183-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.