IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i3d10.1007_s10479-023-05614-w.html
   My bibliography  Save this article

Guiding the integration of analytics in business operations through a maturity framework

Author

Listed:
  • Olga Menukhin

    (The University of Manchester)

  • Catherine Mandungu

    (The University of Manchester)

  • Azar Shahgholian

    (Liverpool John Moores University)

  • Nikolay Mehandjiev

    (The University of Manchester)

Abstract

The analytics function is growing in importance as the digitisation of business operations and markets leads to the generation of ever-increasing amounts of data. Analysing this data in a manner aligned with company priorities and structures can generate value through supporting effective decision-making, rapid product innovation, supply chain visibility and other aspects of intra- and inter-company operations. To guide the growth we derive a novel maturity framework focused on driving the Analytics-Business alignment, covering a number of diverse organisational facets such as data, leadership support, processes, data management, governance, technology and people. It differentiates itself by using a firm theoretical foundation and providing guidance for analytics capability development instead of simply diagnosing the existing maturity level. To guide development, it distinguishes between two aspects of maturity – a “state” aspect, which is used to assess the present situation in an organisation, and a “management” aspect, which evaluates management attitude in order to establish the next stage of analytics growth. The framework has been implemented in a web-based tool and its utility has been demonstrated by obtaining feedback from 64 managers from a variety of sectors, who have praised its ability to integrate diagnosis of the current situation with guidance on the next steps necessary to develop analytics maturity.

Suggested Citation

  • Olga Menukhin & Catherine Mandungu & Azar Shahgholian & Nikolay Mehandjiev, 2025. "Guiding the integration of analytics in business operations through a maturity framework," Annals of Operations Research, Springer, vol. 348(3), pages 2017-2047, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:3:d:10.1007_s10479-023-05614-w
    DOI: 10.1007/s10479-023-05614-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05614-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05614-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Mikalef, Patrick & Pateli, Adamantia, 2017. "Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA," Journal of Business Research, Elsevier, vol. 70(C), pages 1-16.
    3. Tavares Thomé, Antônio Márcio & Scavarda, Luiz Felipe & Fernandez, Nicole Suclla & Scavarda, Annibal José, 2012. "Sales and operations planning: A research synthesis," International Journal of Production Economics, Elsevier, vol. 138(1), pages 1-13.
    4. Carvalho, João Vidal & Rocha, Álvaro & van de Wetering, Rogier & Abreu, António, 2019. "A Maturity model for hospital information systems," Journal of Business Research, Elsevier, vol. 94(C), pages 388-399.
    5. Yuanzhu Zhan & Kim Hua Tan & Yina Li & Ying Kei Tse, 2018. "Unlocking the power of big data in new product development," Annals of Operations Research, Springer, vol. 270(1), pages 577-595, November.
    6. Holmlund, Maria & Van Vaerenbergh, Yves & Ciuchita, Robert & Ravald, Annika & Sarantopoulos, Panagiotis & Ordenes, Francisco Villarroel & Zaki, Mohamed, 2020. "Customer experience management in the age of big data analytics: A strategic framework," Journal of Business Research, Elsevier, vol. 116(C), pages 356-365.
    7. Vidgen, Richard & Shaw, Sarah & Grant, David B., 2017. "Management challenges in creating value from business analytics," European Journal of Operational Research, Elsevier, vol. 261(2), pages 626-639.
    8. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    9. Grossman, Robert L., 2018. "A framework for evaluating the analytic maturity of an organization," International Journal of Information Management, Elsevier, vol. 38(1), pages 45-51.
    10. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    11. Kathleen M. Eisenhardt & Jeffrey A. Martin, 2000. "Dynamic capabilities: what are they?," Strategic Management Journal, Wiley Blackwell, vol. 21(10‐11), pages 1105-1121, October.
    12. Paul A. Pavlou & Omar A. El Sawy, 2006. "From IT Leveraging Competence to Competitive Advantage in Turbulent Environments: The Case of New Product Development," Information Systems Research, INFORMS, vol. 17(3), pages 198-227, September.
    13. James E. Cates & Sam S. Gill & Natalie Zeituny, 2005. "The Ladder of Business Intelligence (LOBI): a framework for enterprise IT planning and architecture," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 1(1/2), pages 220-238.
    14. Braganza, Ashley & Brooks, Laurence & Nepelski, Daniel & Ali, Maged & Moro, Russ, 2017. "Resource management in big data initiatives: Processes and dynamic capabilities," Journal of Business Research, Elsevier, vol. 70(C), pages 328-337.
    15. Mikalef, Patrick & Boura, Maria & Lekakos, George & Krogstie, John, 2019. "Big data analytics and firm performance: Findings from a mixed-method approach," Journal of Business Research, Elsevier, vol. 98(C), pages 261-276.
    16. Birger Wernerfelt, 1984. "A resource‐based view of the firm," Strategic Management Journal, Wiley Blackwell, vol. 5(2), pages 171-180, April.
    17. Vicky Ching Gu & Bin Zhou & Qing Cao & Jeffery Adams, 2021. "Exploring the relationship between supplier development, big data analytics capability, and firm performance," Annals of Operations Research, Springer, vol. 302(1), pages 151-172, July.
    18. Larson, Deanne & Chang, Victor, 2016. "A review and future direction of agile, business intelligence, analytics and data science," International Journal of Information Management, Elsevier, vol. 36(5), pages 700-710.
    19. Machado, Carla Gonçalves & Pinheiro de Lima, Edson & Gouvea da Costa, Sergio Eduardo & Angelis, Jannis Jan & Mattioda, Rosana Adami, 2017. "Framing maturity based on sustainable operations management principles," International Journal of Production Economics, Elsevier, vol. 190(C), pages 3-21.
    20. Pamela Danese & Margherita Molinaro & Pietro Romano, 2018. "Managing evolutionary paths in Sales and Operations Planning: key dimensions and sequences of implementation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(5), pages 2036-2053, March.
    21. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    22. Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
    23. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    24. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    25. Côrte-Real, Nadine & Oliveira, Tiago & Ruivo, Pedro, 2017. "Assessing business value of Big Data Analytics in European firms," Journal of Business Research, Elsevier, vol. 70(C), pages 379-390.
    26. Wamba, Samuel Fosso & Gunasekaran, Angappa & Akter, Shahriar & Ren, Steven Ji-fan & Dubey, Rameshwar & Childe, Stephen J., 2017. "Big data analytics and firm performance: Effects of dynamic capabilities," Journal of Business Research, Elsevier, vol. 70(C), pages 356-365.
    27. Steven Ji-fan Ren & Samuel Fosso Wamba & Shahriar Akter & Rameshwar Dubey & Stephen J. Childe, 2017. "Modelling quality dynamics, business value and firm performance in a big data analytics environment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5011-5026, September.
    28. Carvalho, João Vidal & Rocha, Álvaro & Vasconcelos, José & Abreu, António, 2019. "A health data analytics maturity model for hospitals information systems," International Journal of Information Management, Elsevier, vol. 46(C), pages 278-285.
    29. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Pan, Qiaohong & Luo, Wenping & Fu, Yi, 2022. "A csQCA study of value creation in logistics collaboration by big data: A perspective from companies in China," Technology in Society, Elsevier, vol. 71(C).
    3. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    4. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    5. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "Towards a business analytics capability for the circular economy," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    6. Conboy, Kieran & Mikalef, Patrick & Dennehy, Denis & Krogstie, John, 2020. "Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda," European Journal of Operational Research, Elsevier, vol. 281(3), pages 656-672.
    7. Samuel Fosso Wamba & Maciel M. Queiroz & Lunwen Wu & Uthayasankar Sivarajah, 2024. "Big data analytics-enabled sensing capability and organizational outcomes: assessing the mediating effects of business analytics culture," Annals of Operations Research, Springer, vol. 333(2), pages 559-578, February.
    8. Tugba Karaboga & Cemal Zehir & Ekrem Tatoglu & H. Aykut Karaboga & Abderaouf Bouguerra, 2023. "Big data analytics management capability and firm performance: the mediating role of data-driven culture," Review of Managerial Science, Springer, vol. 17(8), pages 2655-2684, November.
    9. Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
    10. Sabeen Hussain Bhatti & Wan Mohd Hirwani Wan Hussain & Jabran Khan & Shahbaz Sultan & Alberto Ferraris, 2024. "Exploring data-driven innovation: What’s missing in the relationship between big data analytics capabilities and supply chain innovation?," Annals of Operations Research, Springer, vol. 333(2), pages 799-824, February.
    11. Rialti, Riccardo & Zollo, Lamberto & Ferraris, Alberto & Alon, Ilan, 2019. "Big data analytics capabilities and performance: Evidence from a moderated multi-mediation model," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    12. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance," International Journal of Production Economics, Elsevier, vol. 239(C).
    13. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    14. Mujahid Mohiuddin Babu & Mahfuzur Rahman & Ashraful Alam & Bidit Lal Dey, 2024. "Exploring big data-driven innovation in the manufacturing sector: evidence from UK firms," Annals of Operations Research, Springer, vol. 333(2), pages 689-716, February.
    15. Ashaari, Mohamed Azlan & Singh, Karpal Singh Dara & Abbasi, Ghazanfar Ali & Amran, Azlan & Liebana-Cabanillas, Francisco J., 2021. "Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Alberto Bertello & Alberto Ferraris & Stefano Bresciani & Paola Bernardi, 2021. "Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 25(4), pages 1035-1055, December.
    17. repec:osf:osfxxx:an8er_v1 is not listed on IDEAS
    18. Shahriar Akter & Saradhi Motamarri & Shahriar Sajib & Ruwan J. Bandara & Shlomo Tarba & Demetris Vrontis, 2024. "Theorising the Microfoundations of analytics empowerment capability for humanitarian service systems," Annals of Operations Research, Springer, vol. 335(3), pages 989-1013, April.
    19. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2021. "Data Analytics Diffusion in the UK Renewable Energy Sector: An Innovation Perspective," Post-Print hal-03781046, HAL.
    20. Jingmei Gao & Zahid Sarwar, 2024. "How do firms create business value and dynamic capabilities by leveraging big data analytics management capability?," Information Technology and Management, Springer, vol. 25(3), pages 283-304, September.
    21. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:3:d:10.1007_s10479-023-05614-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.