IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v249y2017i1d10.1007_s10479-016-2169-5.html
   My bibliography  Save this article

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Author

Listed:
  • Oleg Burdakov

    (Linköping University)

  • Jonas Kvarnström

    (Linköping University)

  • Patrick Doherty

    (Linköping University)

Abstract

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced by other UAVs in order to maintain complete surveillance of the perimeter. In this paper we consider the problem of scheduling such replacements. We present optimal replacement strategies and justify their optimality.

Suggested Citation

  • Oleg Burdakov & Jonas Kvarnström & Patrick Doherty, 2017. "Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles," Annals of Operations Research, Springer, vol. 249(1), pages 163-174, February.
  • Handle: RePEc:spr:annopr:v:249:y:2017:i:1:d:10.1007_s10479-016-2169-5
    DOI: 10.1007/s10479-016-2169-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2169-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2169-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anton Molyboha & Michael Zabarankin, 2012. "Stochastic Optimization of Sensor Placement for Diver Detection," Operations Research, INFORMS, vol. 60(2), pages 292-312, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongwook Kim & Kyungsik Lee & Ilkyeong Moon, 2019. "Stochastic facility location model for drones considering uncertain flight distance," Annals of Operations Research, Springer, vol. 283(1), pages 1283-1302, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Lu & John J. Hasenbein & David P. Morton, 2016. "Modeling and Optimization of a Spatial Detection System," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 512-526, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:249:y:2017:i:1:d:10.1007_s10479-016-2169-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.