IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v108y2024i2d10.1007_s10182-022-00467-3.html
   My bibliography  Save this article

Statistical guarantees for sparse deep learning

Author

Listed:
  • Johannes Lederer

    (Ruhr-University Bochum)

Abstract

Neural networks are becoming increasingly popular in applications, but our mathematical understanding of their potential and limitations is still limited. In this paper, we further this understanding by developing statistical guarantees for sparse deep learning. In contrast to previous work, we consider different types of sparsity, such as few active connections, few active nodes, and other norm-based types of sparsity. Moreover, our theories cover important aspects that previous theories have neglected, such as multiple outputs, regularization, and $$\ell_{2}$$ ℓ 2 -loss. The guarantees have a mild dependence on network widths and depths, which means that they support the application of sparse but wide and deep networks from a statistical perspective. Some of the concepts and tools that we use in our derivations are uncommon in deep learning and, hence, might be of additional interest.

Suggested Citation

  • Johannes Lederer, 2024. "Statistical guarantees for sparse deep learning," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(2), pages 231-258, June.
  • Handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-022-00467-3
    DOI: 10.1007/s10182-022-00467-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-022-00467-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-022-00467-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnak S. Dalalyan & Mohamed Hebiri & Johannes Lederer, 2014. "On the Prediction Performance of the Lasso," Working Papers 2014-05, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Xu & Zhou Fan, 2021. "Iterative Alpha Expansion for estimating gradient‐sparse signals from linear measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 271-292, April.
    2. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    3. Tung Duy Luu & Jalal Fadili & Christophe Chesneau, 2020. "Sharp oracle inequalities for low-complexity priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 353-397, April.
    4. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    5. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
    6. Jacob Bien & Irina Gaynanova & Johannes Lederer & Christian L. Müller, 2019. "Prediction error bounds for linear regression with the TREX," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 451-474, June.
    7. Pierre Bellec & Alexandre Tsybakov, 2015. "Sharp oracle bounds for monotone and convex regression through aggregation," Working Papers 2015-04, Center for Research in Economics and Statistics.
    8. Wanling Xie & Hu Yang, 2023. "Group sparse recovery via group square-root elastic net and the iterative multivariate thresholding-based algorithm," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 469-507, September.
    9. Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
    10. Pawan Gupta & Marianna Pensky, 2018. "Solution of Linear Ill-Posed Problems Using Random Dictionaries," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 178-193, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-022-00467-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.