IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i1d10.1007_s11634-018-0346-x.html
   My bibliography  Save this article

sARI: a soft agreement measure for class partitions incorporating assignment probabilities

Author

Listed:
  • Abby Flynt

    (Bucknell University)

  • Nema Dean

    (University of Glasgow)

  • Rebecca Nugent

    (Carnegie Mellon University)

Abstract

Agreement indices are commonly used to summarize the performance of both classification and clustering methods. The easy interpretation/intuition and desirable properties that result from the Rand and adjusted Rand indices, has led to their popularity over other available indices. While more algorithmic clustering approaches like k-means and hierarchical clustering produce hard partition assignments (assigning observations to a single cluster), other techniques like model-based clustering include information about the certainty of allocation of objects through class membership probabilities (soft partitions). To assess performance using traditional indices, e.g., the adjusted Rand index (ARI), the soft partition is mapped to a hard set of assignments, which commonly overstates the certainty of correct assignments. This paper proposes an extension of the ARI, the soft adjusted Rand index (sARI), with similar intuition and interpretation but also incorporating information from one or two soft partitions. It can be used in conjunction with the ARI, comparing the similarities of hard to soft, or soft to soft partitions to the similarities of the mapped hard partitions. Simulation study results support the intuition that in general, mapping to hard partitions tends to increase the measure of similarity between partitions. In applications, the sARI more accurately reflects the cluster boundary overlap commonly seen in real data.

Suggested Citation

  • Abby Flynt & Nema Dean & Rebecca Nugent, 2019. "sARI: a soft agreement measure for class partitions incorporating assignment probabilities," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 303-323, March.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:1:d:10.1007_s11634-018-0346-x
    DOI: 10.1007/s11634-018-0346-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-018-0346-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-018-0346-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    2. Qiu, Weiliang & Joe, Harry, 2006. "Separation index and partial membership for clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 585-603, February.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. Fraley, Chris & Raftery, Adrian, 2007. "Model-based Methods of Classification: Using the mclust Software in Chemometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 18(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey L. Andrews & Ryan Browne & Chelsey D. Hvingelby, 2022. "On Assessments of Agreement Between Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 326-342, July.
    2. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharine M. Clark & Paul D. McNicholas, 2024. "Finding Outliers in Gaussian Model-based Clustering," Journal of Classification, Springer;The Classification Society, vol. 41(2), pages 313-337, July.
    2. Paula M. Murray & Ryan P. Browne & Paul D. McNicholas, 2020. "Mixtures of Hidden Truncation Hyperbolic Factor Analyzers," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 366-379, July.
    3. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    4. Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
    5. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    6. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    7. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.
    8. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    9. Preeti & Kusum Deep, 2024. "Density Peak Clustering Using Grey Wolf Optimization Approach," Journal of Classification, Springer;The Classification Society, vol. 41(2), pages 338-370, July.
    10. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
    11. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    12. Ryan P. Browne & Luca Bagnato & Antonio Punzo, 2024. "Parsimony and parameter estimation for mixtures of multivariate leptokurtic-normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 597-625, September.
    13. Xuwen Zhu & Yana Melnykov, 2022. "On Finite Mixture Modeling of Change-point Processes," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 3-22, March.
    14. Wei, Yuhong & Tang, Yang & McNicholas, Paul D., 2019. "Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 18-41.
    15. Alex Sharp & Glen Chalatov & Ryan P. Browne, 2023. "A dual subspace parsimonious mixture of matrix normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 801-822, September.
    16. Yu Fei & Rongli Li & Zhouhong Li & Guoqi Qian, 2024. "Clustering Longitudinal Data for Growth Curve Modelling by Gibbs Sampler and Information Criterion," Journal of Classification, Springer;The Classification Society, vol. 41(2), pages 371-401, July.
    17. Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
    18. Cristina Tortora & Brian C. Franczak & Ryan P. Browne & Paul D. McNicholas, 2019. "A Mixture of Coalesced Generalized Hyperbolic Distributions," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 26-57, April.
    19. M. P. B. Gallaugher & C. Biernacki & P. D. McNicholas, 2023. "Parameter-wise co-clustering for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1597-1619, September.
    20. Motegi, Ryosuke & Seki, Yoichi, 2023. "SMLSOM: The shrinking maximum likelihood self-organizing map," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:1:d:10.1007_s11634-018-0346-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.