IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v11y2017i2d10.1007_s11634-015-0229-3.html
   My bibliography  Save this article

Backtransformation: a new representation of data processing chains with a scalar decision function

Author

Listed:
  • Mario Michael Krell

    (University of Bremen)

  • Sirko Straube

    (German Research Center for Artificial Intelligence)

Abstract

Data processing often transforms a complex signal using a set of different preprocessing algorithms to a single value as the outcome of a final decision function. Still, it is challenging to understand and visualize the interplay between the algorithms performing this transformation. Especially when dimensionality reduction is used, the original data structure (e.g., spatio-temporal information) is hidden from subsequent algorithms. To tackle this problem, we introduce the backtransformation concept suggesting to look at the combination of algorithms as one transformation which maps the original input signal to a single value. Therefore, it takes the derivative of the final decision function and transforms it back through the previous processing steps via backward iteration and the chain rule. The resulting derivative of the composed decision function in the sample of interest represents the complete decision process. Using it for visualizations might improve the understanding of the process. Often, it is possible to construct a feasible processing chain with affine mappings which simplifies the calculation for the backtransformation and the interpretation of the result a lot. In this case, the affine backtransformation provides the complete parameterization of the processing chain. This article introduces the theory, provides implementation guidelines, and presents three application examples.

Suggested Citation

  • Mario Michael Krell & Sirko Straube, 2017. "Backtransformation: a new representation of data processing chains with a scalar decision function," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 415-439, June.
  • Handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-015-0229-3
    DOI: 10.1007/s11634-015-0229-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-015-0229-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-015-0229-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Feess & Mario M Krell & Jan H Metzen, 2013. "Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-015-0229-3. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.