IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v7y2017i2p237-268.html
   My bibliography  Save this article

Pérdidas inesperadas por riesgo operativo en una entidad financiera con Teoría de Cópulas / Unexpected Losses for Operational Risk in a Financial Institution with Copula Theory

Author

Listed:
  • Macías Villalba, Gloria Inés

Abstract

En la búsqueda por el equilibro y estabilidad del sistema financiero; Basilea II propone métodos avanzados para la medición del riesgo operativo que pueden ser desarrollados por las entidades involucradas y ajustados a los requerimientos del supervisor. Estas metodologías permiten a las entidades estimar las pérdidas por riesgo operativo de manera más objetiva, pero los modelos de cálculo de pérdida, generalmente se centran en los eventos de mayor frecuencia pero de menor cuantía en el cuerpo de la distribución, sin embargo, también es importante considerar eventos menos frecuentes pero de alto impacto, esto es, eventos extremos cuya distribución debe ser analizada de manera separada y con modelos específicos. Entre los métodos utilizados para calcular las pérdidas inesperadas por riesgo operativo, están la teoría de valores extremos TVE, y la teoría de cópulas. Tanto la teoría de valores extremos como la de cópulas buscan distribuciones de ajuste que simulen el comportamiento de los datos extremos,sin embargo, la teoría de cópulas añade un elemento fundamental que hace referencia a la dependencia entre las variables, que para el caso del riesgo operativo sería importante contemplar debido a que se analizan pérdidas por tipos de eventos en cada una de las líneas de negocio. / In the search for balance and stability in the financial system, Basel II proposes advanced methods to measure operational risk that can be developed by the entities involved and adjusted to the requirements of the regulator. These methodologies allow such entities to estimate losses due to operating risk more objectively, however loss calculation models are generally focus on higher frequency but less value events from the body of the distribution. Nevertheless, it is also important to consider less frequent but high impact events, this is extreme events whose distribution must be analyzed separately with specific models. Among the methods used to calculate unexpected losses due to operational risk are TVE Extreme Value Theory and Copula Theory. Both, Extreme Value Theory and Copula Theory model distributions simulate the behavior of extreme data, however, copulas theory adds a fundamental element that makes reference to the dependence between variables, which in the case of the operational risk would be important to consider since losses are analyzed by types of events in each business line.

Suggested Citation

  • Macías Villalba, Gloria Inés, 2017. "Pérdidas inesperadas por riesgo operativo en una entidad financiera con Teoría de Cópulas / Unexpected Losses for Operational Risk in a Financial Institution with Copula Theory," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 7(2), pages 237-268, julio-dic.
  • Handle: RePEc:sfr:efruam:v:7:y:2017:i:2:p:237-268
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/80/73
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Riesgo operativo; distribución de pérdidas agregadas; pérdidas inesperadas; cópulas; eventos extremos / Operational Risk; Distribution of Aggregate Losses; Expected Losses; Copula; Extreme Events;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • Y - Miscellaneous Categories
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:7:y:2017:i:2:p:237-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.