Author
Abstract
Представлен обзор проблем и подходов к анализу динамики выбеганий, возникающей в моделях с адаптивным обучением экономических агентов с постоянным коэффициентом приращения, используемой для моделирования и описания поведения различных показателей (как макро-, так и микроэкономических) при разных экономических явлениях, таких как валютные кризисы, поведение темпов инфляции, эндогенные сговоры в олигополии и циклы экономической активности. В обзоре рассматриваются и противопоставляются два существующих в настоящее время подхода к анализу динамики выбеганий: дискретно-временной, применявшийся, например, Чо, Вильямсом и Сарджентом (2002), и непрерывно-временной, предложенный Каса (2004) и расширенный недавно Колюжновым, Богомоловой и Слободяном (2014), указывая на преимущества последнего. Непрерывно-временной подход основан на применении результатов непрерывно-временной версии теории больших отклонений к диффузионной аппроксимации изначальной дискретно-временной динамики при обучении. Динамика выбеганий характеризуется при помощи аналитических значений наиболее вероятной точки выбегания и среднего времени выбеганий. В статье приведен пример применения непрерывно-временного подхода к задаче Фелпса, в которой правительство контролирует инфляцию, одновременно адаптивно изучая аппроксимацию кривой Филлипса. This paper presents the review of issues and approaches to the analysis of escape dynamics in economic models with constant gain adaptive learning which is used to model and describe the behavior of various (macroeconomic as well as microeconomic) variables in diverse economic phenomena such as currency crises, inflation episodes, endogenous collusion in oligopoly, and cycles of economic activity. This review considers and contrasts two currently existing approaches to the analysis of escape dynamics: the discrete-time approach employed, for example, by Cho, Williams and Sargent (2002), and the continuous-time approach proposed by Kasa (2004) and extended recently by Kolyuzhnov, Bogomolova and Slobodyan (2014), stressing the advantages of the latter. The continuous-time approach is based on the application of the results of the continuous-time version of the large deviations theory to the diffusion approximation of the original discrete-time dynamics under learning. Escape dynamics is characterized by analytically deriving the most probable escape point and mean escape time. The paper provides an example of the continuous-time approach applied to the Phelps problem of a government controlling inflation while adaptively learning the approximate Phillips curve.
Suggested Citation
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
;
;
JEL classification:
- C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
- D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
- E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:guhrje:2017_2_06. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Виталия Маркова (email available below). General contact details of provider: http://socionet.ru/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.