IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v54y2025i4p1683-1725.html
   My bibliography  Save this article

Social Rigidity Across and Within Generations: A Predictive Approach

Author

Listed:
  • Haowen Zheng
  • Siwei Cheng

Abstract

How well can individuals’ parental background and previous life experiences predict their mid-life socioeconomic status (SES) attainment? This question is central to stratification research, as a strong power of earlier experiences in predicting later-life outcomes signals substantial intra- or intergenerational status persistence, or put simply, social rigidity. Running machine learning models on panel data to predict outcomes that include hourly wage, total income, family income, and occupational status, we find that a large number (around 4,000) of predictors commonly used in the stratification literature improves the prediction of one’s life chances in middle to late adulthood by about 10 percent to 50 percent, compared with a null model that uses a simple mean of the outcome variable. The level of predictability depends on the specific outcome being analyzed, with labor market indicators like wages and occupational prestige being more predictable than broader socioeconomic measures such as overall personal and family income. Grouping a comprehensive list of predictors into four unique sets that cover family background, childhood and adolescence development, early labor market experiences, and early adulthood family formation, we find that including income, employment status, and occupational characteristics at early career significantly improves models’ prediction accuracy for mid-life SES attainment. We also illustrate the application of the predictive models to examine heterogeneity in predictability by race and gender and identify important variables through this data-driven exercise.

Suggested Citation

  • Haowen Zheng & Siwei Cheng, 2025. "Social Rigidity Across and Within Generations: A Predictive Approach," Sociological Methods & Research, , vol. 54(4), pages 1683-1725, November.
  • Handle: RePEc:sae:somere:v:54:y:2025:i:4:p:1683-1725
    DOI: 10.1177/00491241251347984
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/00491241251347984
    Download Restriction: no

    File URL: https://libkey.io/10.1177/00491241251347984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:54:y:2025:i:4:p:1683-1725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.