Author
Abstract
Researchers of interactive learning environments have grown increasingly interested in designing these systems to become more responsive to differences in students’ cognitive-affective states. They believe that the detection of and adaptation to student cognition and affect may boost student learning gains and enhance the quality of students’ overall learning experience. A growing body of research focuses specifically on the study of cognitive-affective dynamics, defined as the natural ways in which a student’s cognitive-affective states change over time. These types of studies help designers identify desirable (virtuous) cycles that they want to foster and undesirable (vicious) cycles that they want to dissuade. In this study, the author examined the dynamics of the cognitive-affective states exhibited by Filipino students as they used the pre-algebra game MATH BLASTER 9-12. The author focused on the cognitive-affective states of boredom, confusion, delight, engagement, frustration, neutrality, and surprise. Using quantitative field observations, the author determined which of these states tended to persist or transition into other states over time. It was found that boredom was the only state that tended to persist. Boredom tended not to lead to engagement. Students who were confused were not likely to stay confused but were likely to transition into engagement. Students who were delighted were not likely to become confused. From these findings and based on comparisons with related work, it is concluded that boredom is a persistent and undesirable state. Confusion is not persistent and is desirable because it leads to further engagement with the content.
Suggested Citation
Ma. Mercedes T. Rodrigo, 2011.
"Dynamics of Student Cognitive-Affective Transitions During a Mathematics Game,"
Simulation & Gaming, , vol. 42(1), pages 85-99, February.
Handle:
RePEc:sae:simgam:v:42:y:2011:i:1:p:85-99
DOI: 10.1177/1046878110361513
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:simgam:v:42:y:2011:i:1:p:85-99. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.