Author
Listed:
- Marcel Herold
- Marc R.H. Roedenbeck
Abstract
A review of the literature on the application of artificial intelligence (AI) in the recruitment and selection process (RSP) was conducted, but no relevant studies were identified. While several reviews have focussed on AI in human resource management in general, none of these have examined the RSP in detail or employed an AI taxonomy for clustering. Consequently, we applied an AI taxonomy identified in the literature with the aim to identify the stages of the RSP in the focus of research and the algorithms mostly used. We conducted a systematic literature review underpinned by a concept matrix, complemented by a computational literature review (CLR), that employed natural language processing (NLP). The initial 4,579 studies were sourced from three databases and narrowed down to a total of 502. Our major findings indicate that the majority of studies were categorised under the stages “assessment & selection†and “processing incoming applications†in the RSP. The predominant algorithms in use pertain to the field of NLP and machine learning. The CLR emphasised the significance of ethics in AI research. While our study has expanded the general AI taxonomy by incorporating an ethical perspective and is one of the studies with the most articles used to reflect this topic, it is solely focussing on describing the past. Nevertheless, this article helps to align research on exploring and testing alternative approaches with those most frequently used.
Suggested Citation
Marcel Herold & Marc R.H. Roedenbeck, 2025.
"AI-Driven Research in the Recruitment and Selection Process: Application of an AI Taxonomy With a Systematic Literature Review,"
SAGE Open, , vol. 15(3), pages 21582440251, August.
Handle:
RePEc:sae:sagope:v:15:y:2025:i:3:p:21582440251361746
DOI: 10.1177/21582440251361746
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:15:y:2025:i:3:p:21582440251361746. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.