Author
Listed:
- Yue Yuan
- Chih-Fu Wu
- Jin Niu
- Limin Mao
Abstract
As social robots may be used by a single user or multiple users different social scenarios are becoming more important for defining human-robot relationships. Therefore, this study explored human-robot relationships between robots and users in different interaction modes to improve user interaction experience. Specifically, education and companion were selected as the most common areas in the use of social robots. The interaction modes used include single-user interaction and multi-user interaction. The three human-robot relationships were adopted. The robot competence scale, human-robot trust scale, and acceptance of robot scale were used to evaluate subjects’ views on robots. The results demonstrate that in the two scenarios, people were more inclined to maintain a more familiar and closer relationship with the social robot when the robot interacted with a single user. When multiple persons interact in an education scenario, setting the robot to Acquaintance relationships is recommended to improve its competence and people’s trust in the robot. Similarly, in multi-person interaction, Acquaintance relationships would be more accepted and trusted by people in a companion scenario. Based on these results, robot sensors can be added to further optimize human-robot interaction sensing systems. By identifying the number of users in the interaction environment, robots can automatically employ the best human-robot relationship for interaction. Optimizing human-robot interaction sensing systems can also improve robot performance perceived in the interaction to meet different users’ needs and achieve more natural human-robot interaction experiences.
Suggested Citation
Yue Yuan & Chih-Fu Wu & Jin Niu & Limin Mao, 2024.
"The Effects of Human-Robot Interactions and the Human-Robot Relationship on Robot Competence, Trust, and Acceptance,"
SAGE Open, , vol. 14(2), pages 21582440241, May.
Handle:
RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241248230
DOI: 10.1177/21582440241248230
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241248230. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.