Author
Listed:
- Wei Xie
- Zhaohan Liu
- Kani Fu
- Shuneng Zhong
Abstract
The inventory cost of stocking spare parts is a nonnegligible expenditure of providing after-sales service for the manufacturers making capital-intensive products, such as electric vehicles. Especially, for warranty repair service, it is important to manage the spare stock appropriately to satisfy the warranty claims of customers as well as reduce the associated inventory costs. In this paper, we investigate the spare parts inventory issue related to a critical component for under-warranty units of a product. In particular, under the free-replacement warranty policy, failed component will be replaced by a new one by consuming the spare stock. According to the field claim data, we find that the general trend of warranty claims is nonstationary, which will be affected by the product sales and under-warranty failures. Thus, we first propose a model to forecast the time-varying warranty repair demand by explicitly considering the randomness from two major sources, that is, product sales and under-warranty failures. Under the assumptions of Poisson sales process and exponential failure distribution, the closed-form expressions of mean and variance of cumulative warranty repair demand over time are obtained. Because the number of warranty claims in each period is a one-time data, the associated distribution information is unavailable. Then, based on the properties of the demand statistics, we derived a worst-case upper bound for the associated inventory cost and formulate a three-phase finite-horizon spare parts inventory model, which can be used to appropriately address the time-varying warranty claims. Finally, numerical experiments are conducted to investigate the key parameters affecting the optimal decisions where a case study based on real data is presented.
Suggested Citation
Wei Xie & Zhaohan Liu & Kani Fu & Shuneng Zhong, 2025.
"Spare parts provisioning strategy of warranty repair demands for capital-intensive products,"
Journal of Risk and Reliability, , vol. 239(4), pages 754-769, August.
Handle:
RePEc:sae:risrel:v:239:y:2025:i:4:p:754-769
DOI: 10.1177/1748006X241272829
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:239:y:2025:i:4:p:754-769. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.