Author
Listed:
- Yuchen Zhang
- Jinghui Liu
- Chengye Dai
- Qiufen Li
- Zhan Guo
- Xianchun Dai
Abstract
With the continuous acceleration of high-speed railway, the high-voltage traction system of the EMU is an important part for ensuring the operation speed and safety. If the failure does not discontinued effectively, it will cause major dangerous accidents, so the key components identification of system is crucial. This paper focus on the contradictions of the expert evaluation information ambiguity, the difference of expert risk appetite and the rationality of risk priority number (RPN) calculation method in the traditional failure analysis method FMECA. The interval intuitionistic fuzzy set (IIFS) is introduced to transform the expert evaluation into the form of membership interval and non-membership interval, which reduced the ambiguity of the specific numerical score. The interval intuitive fuzzy entropy was used to determine the entropy values of the occurrence (O), severity (S), and undetectable degree (D) of each failure mode under each expert score, which was used to calculate the weight value w j , to weaken the influence caused by subjective risk preference. The interval intuition fuzzy ensemble operator (AIVIFWM) is used to assemble a single scoring matrix into a comprehensive score, which weakens the subjective influence of expert evaluation. Combined with the multi-attribute group decision-making idea, the score function G ( A j ) is calculated for each comprehensive evaluation interval of each failure mode after assembly, so as to sort the failure mode risk and finally identify the key components. Based on the fault data of the high-voltage traction system of a certain type of EMU in 2022, 39 failure modes of 30 components are researched and summarized. The results show that rectifier, converter cooling unit, and carbon skateboard are the key components of EMU high-voltage traction system, which provided basic support for the detection and maintenance decision.
Suggested Citation
Yuchen Zhang & Jinghui Liu & Chengye Dai & Qiufen Li & Zhan Guo & Xianchun Dai, 2025.
"Key components identification of EMU complex system faults with interval intuitionistic fuzzy set and multi-attribute group decision-making based on FMECA method,"
Journal of Risk and Reliability, , vol. 239(3), pages 459-471, June.
Handle:
RePEc:sae:risrel:v:239:y:2025:i:3:p:459-471
DOI: 10.1177/1748006X241262831
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:239:y:2025:i:3:p:459-471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.