Author
Listed:
- Christoph Valentin Steinert
(Department of Political Science, University of Zurich, Switzerland)
- Daniel Kazenwadel
(Department of Physics, University of Konstanz, Germany)
Abstract
OpenAI’s ChatGPT language model has gained popularity as a powerful tool for problem-solving and information retrieval. However, concerns arise about the reproduction of biases present in the language-specific training data. In this study, we address this issue in the context of the Israeli–Palestinian and Turkish–Kurdish conflicts. Using GPT-3.5, we employed an automated query procedure to inquire about casualties in specific airstrikes, in both Hebrew and Arabic for the former conflict and Turkish and Kurdish for the latter. Our analysis reveals that GPT-3.5 provides 34 ± 11% lower fatality estimates when queried in the language of the attacker than in the language of the targeted group. Evasive answers denying the existence of such attacks further increase the discrepancy. A simplified analysis on the current GPT-4 model shows the same trends. To explain the origin of the bias, we conducted a systematic media content analysis of Arabic news sources. The media analysis suggests that the large-language model fails to link specific attacks to the corresponding fatality numbers reported in the Arabic news. Due to its reliance on co-occurring words, the large-language model may provide death tolls from different attacks with greater news impact or cumulative death counts that are prevalent in the training data. Given that large-language models may shape information dissemination in the future, the language bias identified in our study has the potential to amplify existing biases along linguistic dyads and contribute to information bubbles.
Suggested Citation
Christoph Valentin Steinert & Daniel Kazenwadel, 2025.
"How user language affects conflict fatality estimates in ChatGPT,"
Journal of Peace Research, Peace Research Institute Oslo, vol. 62(4), pages 1128-1143, July.
Handle:
RePEc:sae:joupea:v:62:y:2025:i:4:p:1128-1143
DOI: 10.1177/00223433241279381
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joupea:v:62:y:2025:i:4:p:1128-1143. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.prio.no/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.