IDEAS home Printed from https://ideas.repec.org/a/sae/joudef/v23y2026i1p67-78.html

Military camouflaged object detection with deep learning using dataset development and combination

Author

Listed:
  • Kyo-Seong Hwang
  • Jungmok Ma

Abstract

Camouflaged object detection (COD) is one of the emerging artificial intelligence technologies. COD identifies objects that require attention and time to detect with human eyes due to the similarity in texture or color to the surrounding environment. Despite the importance of camouflage and its detection in military, there is a lack of military camouflaged object detection research. Previous studies point out that the general COD has not been well studied due to the lack of camouflaged datasets, and the situation is worse in the military domain. This study aims at tackling the challenge in two directions. First, we carefully assemble the military camouflaged object (MCAM) dataset, including camouflaged soldiers and people as well as camouflaged military supplies for military COD. The experiment shows that MCAM can generate better performance results than the other benchmark datasets (CAMO, COD10K). Second, military (MCAM) and nonmilitary camouflage datasets (benchmark datasets) are combined and tested to overcome data scarcity. The experiment shows that the nonmilitary camouflage datasets are effective for military COD at a certain level, and a proper combination of military and nonmilitary camouflage datasets can improve the detection performance.

Suggested Citation

  • Kyo-Seong Hwang & Jungmok Ma, 2026. "Military camouflaged object detection with deep learning using dataset development and combination," The Journal of Defense Modeling and Simulation, , vol. 23(1), pages 67-78, January.
  • Handle: RePEc:sae:joudef:v:23:y:2026:i:1:p:67-78
    DOI: 10.1177/15485129241233299
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15485129241233299
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15485129241233299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:23:y:2026:i:1:p:67-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.