IDEAS home Printed from https://ideas.repec.org/a/sae/joudef/v18y2021i4p273-284.html
   My bibliography  Save this article

Creating surrogate models for an air and missile defense simulation using design of experiments and neural networks

Author

Listed:
  • Brian M Wade

Abstract

This paper demonstrates a method of constructing multiple linked surrogate models of a high-fidelity air and missile defense simulation using design of experiments to generate labeled data for neural network models. The surrogate models are used to predict the number of incoming missiles destroyed and the number of interceptors launched from a multi-layered defense composed of three different air defense systems intercepting both ballistic and cruise missiles without the need for time intensive simulation runs. A single model that predicts all outcomes was first attempted, but was shown to have inadequate prediction capabilities. The working setup uses multiple surrogate models that are linked to allow information to pass between each model. The paper demonstrates how to develop the surrogate models using a notional example, and how to link these surrogate models together using time to impact for the missiles. The same methodology also allows the same surrogate model to switch between ballistic and cruise missile engagements. When run on a desktop computer, a 30 Monte Carlo set of the notional example took several minutes to complete; however, this proof of principal implementation of the surrogate models was able to predict the mean number missiles destroyed or the mean number of interceptors fired to within one missile nearly instantaneously.

Suggested Citation

  • Brian M Wade, 2021. "Creating surrogate models for an air and missile defense simulation using design of experiments and neural networks," The Journal of Defense Modeling and Simulation, , vol. 18(4), pages 273-284, October.
  • Handle: RePEc:sae:joudef:v:18:y:2021:i:4:p:273-284
    DOI: 10.1177/1548512919877987
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1548512919877987
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1548512919877987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:18:y:2021:i:4:p:273-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.