IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v5y2009i1p52-52.html
   My bibliography  Save this article

On the Approximation of Fuzzy System

Author

Listed:
  • Shihong Yue
  • Wei Chen
  • Jin Wang
  • Huaxiang Wang

Abstract

The choice of fuzzy set function affects how well the fuzzy systems approximate an unknown function. We first examine several popular fuzzy systems, based on which we generalize the error of the fuzzy system by the mathematical functional. Two classes of extended fuzzy systems with special set function are proposed respectively in one-dimensional and two-dimensional reproducing kernel spaces, and they are in fact the best interpolation operators in the sense of classical mathematical approximation. The extended fuzzy system can be used as easily as any typical fuzzy system but has better characters. Our major contributions are as follows. We prove that the existing fuzzy system with a triangle-shaped set function is by no means the best choice for an uncertain system. On the contrary, the reproducing kernel-shaped set function can give the best approximation in the sense of mathematical functional. According to the result, overlapped symmetric triangles or trapezoid set functions reduce fuzzy systems to piecewise linear systems. Universal Gaussian bell-curve set functions can work well but its learning cost is too expensive to apply under online condition. We explain what our proposed extended fuzzy system is useful for a given uncertain system. This solution is associated with another problem: Is the reproducing kernel condition too specific to limit its applications? We must stress that the reproducing kernel function is easily found in any continuous function space. Consequently, the extended fuzzy system can approximate any continuous function with arbitrary accuracy. Furthermore one may question why we do not directly use an optimal approximation functional instead of the extended fuzzy system. Here we answer this problem by the following point of views: The two methods face different applicable conditions. The optimal approximation functional is used to interpolate those accurate data. These data are needed under certain conditions such as distributions and quantity, etc. When little information is available, an optimal approximation functional will do nothing. But the extended fuzzy system gives a good approximation to an uncertain system and can work efficiently under the condition of vague or poor information. Consequently, the two methods have different optimal criteria and different input and output descriptions. Furthermore, the extended fuzzy systems can be created flexibly by artificial experiences or other ways. Two experiments are used to verify the effectiveness and efficiency of our proposed extended fuzzy systems.

Suggested Citation

  • Shihong Yue & Wei Chen & Jin Wang & Huaxiang Wang, 2009. "On the Approximation of Fuzzy System," International Journal of Distributed Sensor Networks, , vol. 5(1), pages 52-52, January.
  • Handle: RePEc:sae:intdis:v:5:y:2009:i:1:p:52-52
    DOI: 10.1080/15501320802540710
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1080/15501320802540710
    Download Restriction: no

    File URL: https://libkey.io/10.1080/15501320802540710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:5:y:2009:i:1:p:52-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.