IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v1y2005i1p81-99.html
   My bibliography  Save this article

Space-time Coordinated Distributed Sensing Algorithms for Resource Efficient Narrowband Target Localization and Tracking

Author

Listed:
  • Shashi Phoha
  • John Koch
  • Eric Grele
  • Christopher Griffin
  • Bharat Madan

Abstract

Distributed sensing has been used for enhancing signal to noise ratios for space-time localization and tracking of remote objects using phased array antennas, sonar, and radio signals. The use of these technologies in identifying mobile targets in a field, emitting acoustic signals, using a network of low-cost narrow band acoustic micro-sensing devices randomly dispersed over the region of interest, presents unique challenges. The effects of wind, turbulence, and temperature gradients and other environmental effects can decrease the signal to noise ratio by introducing random errors that cannot be removed through calibration. This paper presents methods for dynamic distributed signal processing to detect, identify, and track targets in noisy environments with limited resources. Specifically, it evaluates the noise tolerance of adaptive beamforming and compares it to other distributed sensing approaches. Many source localization and direction-of-arrival (DOA) estimation methods based on beamforming using acoustic sensor array have been proposed. We use the approximate maximum likelihood parameter estimation method to perform DOA estimation of the source in the frequency domain. Generally, sensing radii are large and data from the nodes are transmitted over the network to a centralized location where beamforming is done. These methods therefore depict low tolerance to environmental noise. Knowledge based localized distributed processing methods have also been developed for distributed in-situ localization and target tracking in these environments. These methods, due to their reliance only on local sensing, are not significantly affected by spatial perturbations and are robust in tracking targets in low SNR environments. Specifically, Dynamic Space-time Clustering (DSTC)-based localization and tracking algorithm has demonstrated orders of magnitude improvement in noise tolerance with nominal impact on performance. We also propose hybrid algorithms for energy efficient robust performance in very noisy environments. This paper compares the performance of hybrid algorithms with sparse beamforming nodes supported by randomly dispersed DSTC nodes to that of beamforming and DSTC algorithms. Hybrid algorithms achieve relative high accuracy in noisy environments with low energy consumption. Sensor data from a field test in the Marine base at 29 Palms, CA, were analyzed for validating the results in this paper. The results were compared to “ground truth†data obtained from GPS receivers on the vehicles.

Suggested Citation

  • Shashi Phoha & John Koch & Eric Grele & Christopher Griffin & Bharat Madan, 2005. "Space-time Coordinated Distributed Sensing Algorithms for Resource Efficient Narrowband Target Localization and Tracking," International Journal of Distributed Sensor Networks, , vol. 1(1), pages 81-99, February.
  • Handle: RePEc:sae:intdis:v:1:y:2005:i:1:p:81-99
    DOI: 10.1080/15501320590901856
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1080/15501320590901856
    Download Restriction: no

    File URL: https://libkey.io/10.1080/15501320590901856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:1:y:2005:i:1:p:81-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.