IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v18y2022i6p15501329221107582.html
   My bibliography  Save this article

Robust security transmission design for multi-user peer-to-peer wireless relay networks

Author

Listed:
  • Dongmei Yang
  • Hongjun Li
  • Baoquan Ren
  • Xudong Zhong

Abstract

In this article, we studied the robust security transmission design for multi-user peer-to-peer relay networks, where all users demand secure communication and the eavesdropper is passive. Although the previous researches have designed the physical-layer security schemes under perfect channel state information, this study focuses on investigating the robust transmission design in the presence of a passive eavesdropper. Our goal is to maximize the artificial noise power to confuse the passive eavesdropper and subject to the worst-case signal-to-interference-noise-ratio constraints for all users under a bounded spherical region for the norm of the channel state information error vector from the relays to the destinations and the individual power constraints of all relay nodes. Mathematically, the original robust problem is difficult to solve due to its non-linearity and non-convexity. We propose to adopt S-Procedure and rank relaxation techniques to convert it to a semidefinite programming convex problem. The numerical results show the advantage of the proposed robust method.

Suggested Citation

  • Dongmei Yang & Hongjun Li & Baoquan Ren & Xudong Zhong, 2022. "Robust security transmission design for multi-user peer-to-peer wireless relay networks," International Journal of Distributed Sensor Networks, , vol. 18(6), pages 15501329221, June.
  • Handle: RePEc:sae:intdis:v:18:y:2022:i:6:p:15501329221107582
    DOI: 10.1177/15501329221107582
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501329221107582
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501329221107582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:18:y:2022:i:6:p:15501329221107582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.