IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v18y2022i5p15501329221100326.html
   My bibliography  Save this article

A distributed scheme for energy-efficient event-based target recognition using Internet of Multimedia Things

Author

Listed:
  • Manal Alsabhan
  • Adel Soudani
  • Manan Almusallam

Abstract

The availability of low-cost embedded devices for multimedia sensing has encouraged their integration with low-power wireless sensors to create systems that enable advanced services and applications referred to as the Internet of Multimedia Things. Image-based sensing applications are challenged by energy efficiency and resource availability. Mainly, image sensing and transmission in Internet of Multimedia Things severely deplete the sensor energy and overflow the network bandwidth with redundant data. Some solutions presented in the literature, such as image compression, do not efficiently solve this problem because of the algorithms’ computational complexities. Thus, detecting the event of interest locally before the communication using shape-based descriptors would avoid useless data transmission and would extend the network lifetime. In this article, we propose a new approach of distributed event-based sensing scheme over a set of nodes forming a processing cluster to balance the processing load. This approach is intended to reduce per-node energy consumption in one sensing cycle. The conducted experiments show that our novel method based on the general Fourier descriptor decreases the energy consumption in the camera node to only 2.4 mJ, which corresponds to 75.32% of energy-saving compared to the centralized approach, promising to prolong the network lifetime significantly. In addition, the scheme achieved more than 95% accuracy in target recognition.

Suggested Citation

  • Manal Alsabhan & Adel Soudani & Manan Almusallam, 2022. "A distributed scheme for energy-efficient event-based target recognition using Internet of Multimedia Things," International Journal of Distributed Sensor Networks, , vol. 18(5), pages 15501329221, May.
  • Handle: RePEc:sae:intdis:v:18:y:2022:i:5:p:15501329221100326
    DOI: 10.1177/15501329221100326
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501329221100326
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501329221100326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:18:y:2022:i:5:p:15501329221100326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.