IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v18y2022i5p15501329221097819.html
   My bibliography  Save this article

Viability characterization of a proof-of-concept Bluetooth mesh smart building application

Author

Listed:
  • Leonardo Eras
  • Federico Domínguez
  • Caril Martinez

Abstract

Bluetooth low energy is an almost ubiquitous technology currently embedded in billions of power-constrained Internet of Things devices around the world. The Bluetooth mesh profile, released by the Bluetooth Special Interest Group in July 2017, allows Bluetooth low energy devices to form a mesh network, further enabling smart home and building applications where long-range connectivity is required. However, the current release of Bluetooth mesh profile still has power and deployment constraints that limit its applicability. To explore the viability of Bluetooth mesh profile in home/building automation applications, we built the Smart Doorbell: a proof-of-concept Bluetooth mesh profile–based visitor notification system for office spaces. The Smart Doorbell was implemented using a mesh network topology with nodes distributed across office building floors, serving as a real Internet of Things deployment and as a testbed for mesh network protocols. Similar Bluetooth mesh profile evaluations found in literature use mostly development kits and/or synthetic traffic in artificial settings; we contribute by using the Smart Doorbell, a system as close as possible to a minimum viable product, to evaluate power consumption and responsiveness as a proxy for product viability. This article presents the architecture of the Smart Doorbell, the viability evaluation results, and a direct comparison with FruityMesh, a competing Bluetooth low energy mesh network protocol. Overall, the fact that Bluetooth mesh profile devices can directly communicate with a user’s mobile phone (using Bluetooth low energy) considerably eases deployment and provisioning. However, the use of flooding to forward messages across the mesh network increases power consumption, precluding the use of battery-powered nodes on the network’s backbone and severely limiting the applicability of Bluetooth mesh profile in building automation.

Suggested Citation

  • Leonardo Eras & Federico Domínguez & Caril Martinez, 2022. "Viability characterization of a proof-of-concept Bluetooth mesh smart building application," International Journal of Distributed Sensor Networks, , vol. 18(5), pages 15501329221, May.
  • Handle: RePEc:sae:intdis:v:18:y:2022:i:5:p:15501329221097819
    DOI: 10.1177/15501329221097819
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501329221097819
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501329221097819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:18:y:2022:i:5:p:15501329221097819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.