IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i12p15501477211057443.html
   My bibliography  Save this article

Joint power control and user grouping for uplink power domain non-orthogonal multiple access

Author

Listed:
  • Bilal Ur Rehman
  • Mohammad Inayatullah Babar
  • Arbab Waheed Ahmad
  • Hesham Alhumyani
  • Gamil Abdel Azim
  • Rashid A. Saeed
  • Sayed Abdel Khalek

Abstract

Orthogonal multiple access schemes based on assignment of communication resource blocks among multiple contenders, although widely available, still necessitate an upper limit on the number of concurrent users for minimization of multiple-user interference. The feature thwarts efforts to cater for pressing connectivity demands posed by modern-day cellular communication networks. Non-orthogonal multiple access, regarded as a key advancement towards realization of high-speed 5G wireless communication networks, enables multiple users to access the same set of resource blocks non-orthogonally in terms of power with controllable interference, thereby allowing for overall performance enhancement. Owing to the combinatorial nature of the underlying optimization problem involving user pairing/grouping scheme, power control and decoding order, the computational complexity in determining optimal and sub-optimal solutions remains considerably high. This work proposes three novel alternative approaches (Randomly, 2-Opt and Hybrid) for arriving at a near-optimal solution for the problem of user pairing/grouping. The algorithms not only offer reduced computational complexity but also outperform orthogonal multiple access and existing schemes reported in the literature for uplink non-orthogonal multiple access systems.

Suggested Citation

  • Bilal Ur Rehman & Mohammad Inayatullah Babar & Arbab Waheed Ahmad & Hesham Alhumyani & Gamil Abdel Azim & Rashid A. Saeed & Sayed Abdel Khalek, 2021. "Joint power control and user grouping for uplink power domain non-orthogonal multiple access," International Journal of Distributed Sensor Networks, , vol. 17(12), pages 15501477211, December.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:12:p:15501477211057443
    DOI: 10.1177/15501477211057443
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211057443
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211057443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Hassan & Manwinder Singh & Khalid Hamid & Rashid Saeed & Maha Abdelhaq & Raed Alsaqour, 2022. "Modeling of NOMA-MIMO-Based Power Domain for 5G Network under Selective Rayleigh Fading Channels," Energies, MDPI, vol. 15(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:12:p:15501477211057443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.