IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i11p15501477211059092.html
   My bibliography  Save this article

Privacy-preserving inpainting for outsourced image

Author

Listed:
  • Fang Cao
  • Jiayi Sun
  • Xiangyang Luo
  • Chuan Qin
  • Ching-Chun Chang

Abstract

In this article, a framework of privacy-preserving inpainting for outsourced image and an encrypted-image inpainting scheme are proposed. Different with conventional image inpainting in plaintext domain, there are two entities, that is, content owner and image restorer, in our framework. Content owner first encrypts his or her damaged image for privacy protection and outsources the encrypted, damaged image to image restorer, who may be a cloud server with powerful computation capability. Image restorer performs inpainting in encrypted domain and sends the inpainted and encrypted image back to content owner or authorized receiver, who can acquire final inpainted result in plaintext domain through decryption. In our encrypted-image inpainting scheme, with the assist of Johnson–Lindenstrauss transform that can preserve Euclidean distance between two vectors before and after encryption, the best-matching block with the smallest distance to current block can be found and utilized for patch filling in Paillier-encrypted image. To eliminate mosaic effect after decryption, weighted mean filtering in encrypted domain is conducted with Paillier homomorphic properties. Experimental results show that our privacy-preserving inpainting framework can be effectively applied in secure cloud computing, and the proposed encrypted-image inpainting scheme achieves comparable visual quality of inpainted results with some typical inpainting schemes in plaintext domain.

Suggested Citation

  • Fang Cao & Jiayi Sun & Xiangyang Luo & Chuan Qin & Ching-Chun Chang, 2021. "Privacy-preserving inpainting for outsourced image," International Journal of Distributed Sensor Networks, , vol. 17(11), pages 15501477211, November.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:11:p:15501477211059092
    DOI: 10.1177/15501477211059092
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211059092
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211059092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:11:p:15501477211059092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.