IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i11p15501477211052371.html
   My bibliography  Save this article

Image-tag-based indoor localization using end-to-end learning

Author

Listed:
  • Mohammed Alarfaj
  • Zhenqiang Su
  • Raymond Liu
  • Abdulaziz Al-Humam
  • Huaping Liu

Abstract

Image or feature matching-based indoor localization still faces many technical challenges. Image-tag-based schemes using pose estimation are accurate and robust, but they still cannot be deployed widely because their performance degrades significantly when the tag-camera distance is large, which requires densely distributed tags, and the designed system generally is specific to some special tags and lenses. Also, the lens distortion degrades the performance appreciably and is difficult to correct, especially for the wide-angle lenses. This article develops an image-tag-based indoor localization system using end-to-end learning to overcome these issues. It is a deep learning–based system that can learn the mapping from the original tag image to the final 2D location directly from training examples through self-learned features. It achieves consistent performance even when the tag-camera distance is large or when the image has a low resolution. The mapping learned by the deep learning model factors in all kinds of distortions without requiring any distortion estimation. The tag design is based on shape features to make it robust to lighting changes. The system can be easily adapted to new lenses/cameras and/or new tags. Thus, it facilitates easy and rapid deployment without requiring knowledge from domain experts. A drawback of the general deep learning model is its high computational requirements. We discuss practical solutions to enable real-time applications of the proposed scheme even when it is running on a mobile or embedded device. The performance of the proposed scheme is evaluated via a set of experiments in a real setting and has achieved less than 20 cm of positioning errors.

Suggested Citation

  • Mohammed Alarfaj & Zhenqiang Su & Raymond Liu & Abdulaziz Al-Humam & Huaping Liu, 2021. "Image-tag-based indoor localization using end-to-end learning," International Journal of Distributed Sensor Networks, , vol. 17(11), pages 15501477211, November.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:11:p:15501477211052371
    DOI: 10.1177/15501477211052371
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211052371
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211052371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:11:p:15501477211052371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.