IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i10p15501477211052202.html
   My bibliography  Save this article

Toward lightweight intrusion detection systems using the optimal and efficient feature pairs of the Bot-IoT 2018 dataset

Author

Listed:
  • Erman Özer
  • Murat Ä°skefiyeli
  • Jahongir Azimjonov

Abstract

Intrusion detection systems play a vital role in traffic flow monitoring on Internet of Things networks by providing a secure network traffic environment and blocking unwanted traffic packets. Various intrusion detection systems approaches have been proposed previously based on data mining, fuzzy techniques, genetic, neurogenetic, particle swarm intelligence, rough sets, and conventional machine learning. However, these methods are not energy efficient and do not perform accurately due to the inappropriate feature selection or the use of full features of datasets. In general, datasets contain more than 10 features. Any machine learning–based lightweight intrusion detection systems trained with full features turn into an inefficient and heavyweight intrusion detection systems. This case challenges Internet of Things networks that suffer from power efficiency problems. Therefore, lightweight (energy-efficient), accurate, and high-performance intrusion detection systems are paramount instead of inefficient and heavyweight intrusion detection systems. To address these challenges, a new approach that can help to determine the most effective and optimal feature pairs of datasets which enable the development of lightweight intrusion detection systems was proposed. For this purpose, 10 machine learning algorithms and the recent BoT-IoT (2018) dataset were selected. Twelve best features recommended by the developers of this dataset were used in this study. Sixty-six unique feature pairs were generated from the 12 best features. Next, 10 full-feature-based intrusion detection systems were developed by training the 10 machine learning algorithms with the 12 full features. Similarly, 660 feature-pair-based lightweight intrusion detection systems were developed by training the 10 machine learning algorithms via each feature pair out of the 66 feature pairs. Moreover, the 10 intrusion detection systems trained with 12 best features and the 660 intrusion detection systems trained via 66 feature pairs were compared to each other based on the machine learning algorithmic groups. Then, the feature-pair-based lightweight intrusion detection systems that achieved the accuracy level of the 10 full-feature-based intrusion detection systems were selected. This way, the optimal and efficient feature pairs and the lightweight intrusion detection systems were determined. The most lightweight intrusion detection systems achieved more than 90% detection accuracy.

Suggested Citation

  • Erman Özer & Murat Ä°skefiyeli & Jahongir Azimjonov, 2021. "Toward lightweight intrusion detection systems using the optimal and efficient feature pairs of the Bot-IoT 2018 dataset," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:10:p:15501477211052202
    DOI: 10.1177/15501477211052202
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211052202
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211052202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:10:p:15501477211052202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.