IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i9p1550147720940650.html
   My bibliography  Save this article

Novel method for detection of void defects under track slabs using air-coupled ultrasonic sensors

Author

Listed:
  • Xingjie Chen
  • Wenfa Zhu
  • Guopeng Fan
  • Zaiwei Li
  • Wei Shao
  • Xiangzhen Meng
  • Liming Li
  • Haiyan Zhang

Abstract

Void defects under track slabs are the main danger affecting the safe operation of high-speed railways. In the short high-speed railway maintenance periods, China’s high-speed railway line maintenance operations must quickly and dynamically determine void defects under track slabs that are in service without contact. However, the detection of void defects under track slabs still mainly relies on the manual inspection and flaw detection by railway workers during the railway maintenance period. If the defects are not quickly identified, the consequences could be disastrous. This article presents a new method for the non-contact dynamic detection of void defects under track slabs. The method involves the use of air-coupled ultrasonic sensors to generate and receive ultrasonic guided waves in the track slab to quantitatively represent the size of the void defect according to the principle of energy leakage of guided waves in the propagation process. The characteristics of the position-amplitude curve, taking the position of the beam axis as the abscissa and the amplitude of the time domain signal as the ordinate, were numerically calculated and analyzed. The quantitative relationship between the convex interval of the position-amplitude curve and the size of the void defect was obtained, and an imaging method of the void defects based on x, y two-dimensional line scanning data fusion is proposed. The excitation and reception methods of air-coupled ultrasonic guided waves were studied, and a 1:1 model of the track structure was built in the laboratory to verify the method and detect the void defect under the track slab. The experimental results show that ultrasonic guided waves can be excited and received in the track slab by air-coupled ultrasonic sensors. Based on the guided wave energy leakage principle, the quantitative characterization and imaging of the void defect under track slabs can be realized.

Suggested Citation

  • Xingjie Chen & Wenfa Zhu & Guopeng Fan & Zaiwei Li & Wei Shao & Xiangzhen Meng & Liming Li & Haiyan Zhang, 2020. "Novel method for detection of void defects under track slabs using air-coupled ultrasonic sensors," International Journal of Distributed Sensor Networks, , vol. 16(9), pages 15501477209, September.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:9:p:1550147720940650
    DOI: 10.1177/1550147720940650
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720940650
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720940650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:9:p:1550147720940650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.