IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i6p1550147720933131.html
   My bibliography  Save this article

A new algorithm for considering green communication and excellent sensing performance in cognitive radio networks

Author

Listed:
  • Tangsen Huang
  • Xiangdong Yin
  • Qingjiao Cao

Abstract

Multi-node cooperative sensing can effectively improve the performance of spectrum sensing. Multi-node cooperation will generate a large number of local data, and each node will send its own sensing data to the fusion center. The fusion center will fuse the local sensing results and make a global decision. Therefore, the more nodes, the more data, when the number of nodes is large, the global decision will be delayed. In order to achieve the real-time spectrum sensing, the fusion center needs to quickly fuse the data of each node. In this article, a fast algorithm of big data fusion is proposed to improve the real-time performance of the global decision. The algorithm improves the computing speed by reducing repeated computation. The reinforcement learning mechanism is used to mark the processed data. When the same environment parameter appears, the fusion center can directly call the nodes under the parameter environment, without having to conduct the sensing operation again. This greatly reduces the amount of data processed and improves the data processing efficiency of the fusion center. Experimental results show that the algorithm in this article can reduce the computation time while improving the sensing performance.

Suggested Citation

  • Tangsen Huang & Xiangdong Yin & Qingjiao Cao, 2020. "A new algorithm for considering green communication and excellent sensing performance in cognitive radio networks," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720933131
    DOI: 10.1177/1550147720933131
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720933131
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720933131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720933131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.