IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i6p1550147720928733.html
   My bibliography  Save this article

Provable secure identity-based online/offline encryption scheme with continual leakage resilience for wireless sensor network

Author

Listed:
  • Xiujie Zhang
  • Xingbing Fu
  • Lu Hong
  • Yu Liu
  • Liangliang Wang

Abstract

As a potential technology, the identity-based online/offline encryption scheme is split into two phases (the offline phase and the online phase) which is especially suitable for sensor nodes with limited computation resources in that most of the works can be executed offline. However, a challenging issue is the well-known identity-based online/offline encryption schemes unable to resist continual key leakage attacks of the secret keys. To address the above security challenge, we put forth the first continual leakage-resilient identity-based online/offline encryption scheme which is suitable for ensuring secure communications in wireless sensor networks. More specifically, our formal security proofs analysis indicates that the proposed scheme can guarantee security even if partial information of the secret key is continually leaked due to side-channel attacks or fault injection attacks. Above all, compared to the existing identity-based online/offline encryption schemes, an identity-based online/offline encryption scheme with continual leakage resilient meets wireless sensor networks with strong security.

Suggested Citation

  • Xiujie Zhang & Xingbing Fu & Lu Hong & Yu Liu & Liangliang Wang, 2020. "Provable secure identity-based online/offline encryption scheme with continual leakage resilience for wireless sensor network," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720928733
    DOI: 10.1177/1550147720928733
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720928733
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720928733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720928733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.