IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i6p1550147720927558.html
   My bibliography  Save this article

Generation of broadcasting for fractal adaptive Internet of things reconfiguration under the swarm intelligence paradigm

Author

Listed:
  • Jaime Moreno
  • Oswaldo Morales
  • Ricardo Tejeida
  • Hugo Quintana
  • Grigori Sidorov

Abstract

Recently, a wide range of small devices, such as Wi-Fi Internet of things development boards, which are a kind of the microcontroller units in a general purpose board, are interrelated throughout the planet. In addition, certain microcontroller units interact inside our homes when turning lights on or detecting movements, measuring various parameters, such as gas concentrations, C O 2 , humidity, and the temperature inside a room, or adjusting the intensity of the lights inside and outside of the house. Likewise, there is a great diversity of microcontroller units, ranging from smart cellular telephones or reduced general purpose devices, ESP8266 or RaspberryPi3 to any type of Internet of things devices. Therefore, the general way of connecting the microcontroller units to the Internet is through hub nodes, so that the information can be propagated and shared among them. The main purpose of this article is to yield an adaptive reconfiguration algorithm to link all the sensor nodes (microcontroller units) of a network based on the fractal topology, avoiding the use of hub nodes, in order for the microcontroller units to share all the parameters established in the Internet of things network only through two adjacent sensor nodes as long as any sensor node in the network knows all the parameters of the other ones, even if the sensor nodes are not adjacent. To achieve the above, in this work, an Internet of things network was built based on the Hilbert fractal for being a filling-space curve yielded from the L-systems paradigm, so this fractal Hilbert topology allows access to the entire Internet of things network in a dynamic way, and it is possible to reconfigure the network topology when a new sensor node is attached by applying artificial intelligence to intelligent and dynamic environments.

Suggested Citation

  • Jaime Moreno & Oswaldo Morales & Ricardo Tejeida & Hugo Quintana & Grigori Sidorov, 2020. "Generation of broadcasting for fractal adaptive Internet of things reconfiguration under the swarm intelligence paradigm," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720927558
    DOI: 10.1177/1550147720927558
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720927558
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720927558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720927558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.