IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i6p1550147720912950.html
   My bibliography  Save this article

MIMO-OFDM/OCDM low-complexity equalization under a doubly dispersive channel in wireless sensor networks

Author

Listed:
  • Ahmad AA Solyman
  • Hani Attar
  • Mohammad R Khosravi
  • Baki Koyuncu

Abstract

In this article, three novel systems for wireless sensor networks based on Alamouti decoding were investigated and then compared, which are Alamouti space–time block coding multiple-input single-output/multiple-input multiple-output multicarrier modulation (MCM) system, extended orthogonal space–time block coding multiple-input single-output MCM system, and multiple-input multiple-output system. Moreover, the proposed work is applied over multiple-input multiple-output systems rather than the conventional single-antenna orthogonal chirp division multiplexing systems, based on the discrete fractional cosine transform orthogonal chirp division multiplexing system to mitigate the effect of frequency-selective and time-varying channels, using low-complexity equalizers, specifically by ignoring the intercarrier interference coming from faraway subcarriers and using the LSMR iteration algorithm to decrease the equalization complexity, mainly with long orthogonal chirp division multiplexing symbols, such as the TV symbols. The block diagrams for the proposed systems are provided to simplify the theoretical analysis by making it easier to follow. Simulation results confirm that the proposed multiple-input multiple-output and multiple-input single-output orthogonal chirp division multiplexing systems outperform the conventional multiple-input multiple-output and multiple-input single-output orthogonal frequency division multiplexing systems. Finally, the results show that orthogonal chirp division multiplexing exhibited a better channel energy behavior than classical orthogonal frequency division multiplexing, thus improving the system performance and allowing the system to decrease the equalization complexity.

Suggested Citation

  • Ahmad AA Solyman & Hani Attar & Mohammad R Khosravi & Baki Koyuncu, 2020. "MIMO-OFDM/OCDM low-complexity equalization under a doubly dispersive channel in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720912950
    DOI: 10.1177/1550147720912950
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720912950
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720912950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720912950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.