IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i5p1550147720917647.html
   My bibliography  Save this article

Quality enhancement of VVC intra-frame coding for multimedia services over the Internet

Author

Listed:
  • Seunghyun Cho
  • Dong-Wook Kim
  • Seung-Won Jung

Abstract

In this article, versatile video coding, the next-generation video coding standard, is combined with a deep convolutional neural network to achieve state-of-the-art image compression efficiency. The proposed hierarchical grouped residual dense network exhaustively exploits hierarchical features in each architectural level to maximize the image quality enhancement capability. The basic building block employed for hierarchical grouped residual dense network is residual dense block which exploits hierarchical features from internal convolutional layers. Residual dense blocks are then combined into a grouped residual dense block exploiting hierarchical features from residual dense blocks. Finally, grouped residual dense blocks are connected to comprise a hierarchical grouped residual dense block so that hierarchical features from grouped residual dense blocks can also be exploited for quality enhancement of versatile video coding intra-coded images. Various non-architectural and architectural aspects affecting the training efficiency and performance of hierarchical grouped residual dense network are explored. The proposed hierarchical grouped residual dense network respectively obtained 10.72% and 14.3% of Bjøntegaard-delta-rate gains against versatile video coding in the experiments conducted on two public image datasets with different characteristics to verify the image compression efficiency.

Suggested Citation

  • Seunghyun Cho & Dong-Wook Kim & Seung-Won Jung, 2020. "Quality enhancement of VVC intra-frame coding for multimedia services over the Internet," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917647
    DOI: 10.1177/1550147720917647
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720917647
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720917647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.