IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i4p1550147720916408.html
   My bibliography  Save this article

A tensor compression algorithm using Tucker decomposition and dictionary dimensionality reduction

Author

Listed:
  • Chenquan Gan
  • Junwei Mao
  • Zufan Zhang
  • Qingyi Zhu

Abstract

Tensor compression algorithms play an important role in the processing of multidimensional signals. In previous work, tensor data structures are usually destroyed by vectorization operations, resulting in information loss and new noise. To this end, this article proposes a tensor compression algorithm using Tucker decomposition and dictionary dimensionality reduction, which mainly includes three parts: tensor dictionary representation, dictionary preprocessing, and dictionary update. Specifically, the tensor is respectively performed by the sparse representation and Tucker decomposition, from which one can obtain the dictionary, sparse coefficient, and core tensor. Furthermore, the sparse representation can be obtained through the relationship between sparse coefficient and core tensor. In addition, the dimensionality of the input tensor is reduced by using the concentrated dictionary learning. Finally, some experiments show that, compared with other algorithms, the proposed algorithm has obvious advantages in preserving the original data information and denoising ability.

Suggested Citation

  • Chenquan Gan & Junwei Mao & Zufan Zhang & Qingyi Zhu, 2020. "A tensor compression algorithm using Tucker decomposition and dictionary dimensionality reduction," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:4:p:1550147720916408
    DOI: 10.1177/1550147720916408
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720916408
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720916408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:4:p:1550147720916408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.