IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i3p1550147720914770.html
   My bibliography  Save this article

A novel demodulation algorithm for VHF Data Broadcast signals in multi-sources augmentation navigation system

Author

Listed:
  • Hongwei Zhao
  • Zichun Zhang
  • Xiaozhu Shi
  • Yihui Yin

Abstract

The augmentation navigation system based on multi-source information fusion can significantly improve position accuracy, and the multi-source information is usually transmitted through VHF Data Broadcast . Aiming at the burst characteristics of VHF Data Broadcast, this article proposed a novel demodulation algorithm based on open-loop structure. When a VHF Data Broadcast burst is detected, the timing recovery should be finished first, and the value of cross-correlation between the timing-recovered signal and the local training symbol is calculated to complete the frame synchronization. Then, the data-aided and non-data-aided algorithms are used to estimate the frequency offset. Finally, the phase offset is estimated and the carrier synchronization is accomplished. The simulation results demonstrate that the proposed algorithm can quickly accomplished carrier synchronization without using feedback-loop structure, and the bit error rate is less than 10 −4 when the signal-to-noise ratio is greater than 17 dB, which satisfy the requirement of receiving VHF Data Broadcast signals in augmentation navigation system. Therefore, the proposed algorithm can be used for receiving VHF Data Broadcast signals.

Suggested Citation

  • Hongwei Zhao & Zichun Zhang & Xiaozhu Shi & Yihui Yin, 2020. "A novel demodulation algorithm for VHF Data Broadcast signals in multi-sources augmentation navigation system," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:3:p:1550147720914770
    DOI: 10.1177/1550147720914770
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720914770
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720914770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:3:p:1550147720914770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.