IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i2p1550147720904563.html
   My bibliography  Save this article

Improved interacting multiple model algorithm airport surface target tracking based on geomagnetic sensors

Author

Listed:
  • Xinmin Tang
  • Wenjie Zhao
  • Shangfeng Gao

Abstract

To avoid the inherent defects of current airport surface surveillance systems, a distributed non-cooperative surface surveillance scheme based on geomagnetic sensor technology is proposed in this article. Furthermore, a surface target tracking algorithm based on improved interacting multiple model (WIMM) is presented for use when the target is perceptible. In this algorithm, the weighted sum of the mean values of the residual errors, which is used to reconstruct the model probabilistic likelihood function, and the Markov model transition probability are updated using posterior information. When a target is imperceptible, its trajectory can be predicted by the target identified motion model and the adaptive model transition probability. Simulation results show that the WIMM algorithm can be used efficiently together with an observed small sample of velocity information for target tracking and trajectory prediction. Compared with the interacting multiple model and residual-mean interacting multiple model algorithms, the frequency of model switching and the rate of model identification were increased during the imperceptible period, and target prediction error was greatly reduced.

Suggested Citation

  • Xinmin Tang & Wenjie Zhao & Shangfeng Gao, 2020. "Improved interacting multiple model algorithm airport surface target tracking based on geomagnetic sensors," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720904563
    DOI: 10.1177/1550147720904563
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720904563
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720904563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720904563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.