IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i12p1550147720984659.html
   My bibliography  Save this article

Caching deployment based on energy efficiency in device-to-device cooperative networks

Author

Listed:
  • Weiguang Wang
  • Hui Li
  • Yang Liu
  • Wei Cheng
  • Haoyang Qin

Abstract

The rapid growth of mobile data traffic demand will cause congestion to the future communication network. The cache-enabled device-to-device communication has been proven to effectively enhance the performance of wireless communication networks. This article investigates the caching deployment problem from the energy efficiency in the cache-enabled device-to-device networks. According to the random geometry theory modeling, the closed form expression of energy efficiency is derived, which measures the average number of successful transmitted file bits per unit time and per unit power consumption. And then we establish an optimization problem to maximize energy efficiency. As the formulated optimization problem is a multiple-ratio fractional programming problem that cannot be solved conveniently, we propose a quadratic transformation method to nest in the energy efficiency maximization problem. To tackle this problem, an iterative optimization algorithm is proposed to optimize the caching policy and network energy efficiency. The simulation results demonstrate that the proposed policy can achieve higher energy efficiency and hit probability in the cache-enabled device-to-device network.

Suggested Citation

  • Weiguang Wang & Hui Li & Yang Liu & Wei Cheng & Haoyang Qin, 2020. "Caching deployment based on energy efficiency in device-to-device cooperative networks," International Journal of Distributed Sensor Networks, , vol. 16(12), pages 15501477209, December.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720984659
    DOI: 10.1177/1550147720984659
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720984659
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720984659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720984659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.