IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i8p1550147719867866.html
   My bibliography  Save this article

A novel side-channel analysis for physical-domain security in cyber-physical systems

Author

Listed:
  • Min Wang
  • Kama Huang
  • Yi Wang
  • Zhen Wu
  • Zhibo Du

Abstract

Security of cyber-physical systems against cyber attacks is an important yet challenging problem. Cyber-physical systems are prone to information leakage from the physical domain. The analog emissions, such as magnetic and power, can turn into side channel revealing valuable data, even the crypto key of the system. Template attack is a popular type of side-channel analysis using machine learning technology. Malicious attackers can use template attack to profile the analog emission, then recover the secret key of the system. But conventional template attack requires that the adversary has access to an identical experiment device that he can program to his choice. This study proposes a novel side-channel analysis for physical-domain security in cyber-physical systems. Our contributions are the following three points: (1) Major peak region method for finding points of interests correctly is proposed. (2) A method for establishing templates on the basis of those points of interest still without requiring knowledge of the key is proposed. Several techniques are proposed to improve the quality of the templates as well. (3) A method for choosing attacking traces is proposed to significantly improve the attacking efficiency. Our experiments on three devices show that the proposed method is significantly more effective than conventional template attack. By doing so, we will highlight the importance of performing similar analysis during design time to secure the cyber-physical system.

Suggested Citation

  • Min Wang & Kama Huang & Yi Wang & Zhen Wu & Zhibo Du, 2019. "A novel side-channel analysis for physical-domain security in cyber-physical systems," International Journal of Distributed Sensor Networks, , vol. 15(8), pages 15501477198, August.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719867866
    DOI: 10.1177/1550147719867866
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719867866
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719867866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719867866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.