IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i8p1550147719867864.html
   My bibliography  Save this article

Data cache optimization model based on cyclic genetic ant colony algorithm in edge computing environment

Author

Listed:
  • Danyue Wang
  • Xingshuo An
  • Xianwei Zhou
  • Xing Lü

Abstract

Edge computing has recently emerged as an important paradigm to bring filtering, processing, and caching resources to the edge of networks. However, with the increasing popularity of augmented reality and virtual reality application, user requirements on data access speed have increased. Since the edge node has limited cache space, efficient data caching model is needed to improve the performance of edge computing. We propose a multi-objective optimization data caching model in the edge computing environment using data access counts, data access frequency, and data size as optimization goals. Our model differs from previous data caching schemes that focused only on data access counts or data size. In addition, a cyclic genetic ant algorithm is proposed to solve the multi-objective optimization data caching model. We compare the following three performance indicators: cache hit ratio, average response speed, and bandwidth cost. Simulation results show that the model can improve the cache hit ratio and reduce the response latency and the bandwidth cost.

Suggested Citation

  • Danyue Wang & Xingshuo An & Xianwei Zhou & Xing Lü, 2019. "Data cache optimization model based on cyclic genetic ant colony algorithm in edge computing environment," International Journal of Distributed Sensor Networks, , vol. 15(8), pages 15501477198, August.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719867864
    DOI: 10.1177/1550147719867864
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719867864
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719867864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719867864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.